REPUBLIQUE DE COTE D'IVOIRE

MINISTERE DE L'EDUCATION NATIONALE

INSPECTION GENERALE

DIRECTION DE LA PEDAGOGIE ET DE LA FORMATION CONTINUE (DPFC)

Union - Discipline - Travail

DOMAINE DES SCIENCES

PROGRAMMES EDUCATIFS ET GUIDES D'EXECUTION

PHYSIQUE-CHIMIE

Mot de Madame la Ministre de l'Education Nationale

L'école est le lieu où se forgent les valeurs humaines indispensables pour le développement harmonieux d'une nation. Elle doit être en effet le cadre privilégié où se cultivent la recherche de la vérité, la rigueur intellectuelle, le respect de soi, d'autrui et de la nation, l'amour pour la nation, l'esprit de solidarité, le sens de l'initiative, de la créativité et de la responsabilité.

La réalisation d'une telle entreprise exige la mise à contribution de tous les facteurs, tant matériels qu'humains. C'est pourquoi, soucieux de garantir la qualité et l'équité de notre enseignement, le Ministère de l'Education Nationale s'est toujours préoccupé de doter l'école d'outils performants et adaptés au niveau de compréhension des différents utilisateurs.

Les programmes éducatifs et leurs guides d'exécution que le Ministère de l'Education Nationale a le bonheur de mettre aujourd'hui à la disposition de l'enseignement de base sont les fruits d'un travail de longue haleine, au cours duquel différentes contributions ont été mises à profit en vue de sa réalisation. Ils présentent une entrée dans les apprentissages par les situations en vue de développer des compétences chez l'apprenant en lui offrant la possibilité de construire le sens de ce qu'il apprend.

Nous adressons nos remerciements à tous ceux qui ont apporté leur appui matériel et financier pour la réalisation de ce programme. Nous remercions spécialement Monsieur Philippe JONNAERT, Professeur titulaire de la Chaire UNESCO en Développement Curriculaire de l'Université du Québec à Montréal qui nous a accompagnés dans le recadrage de nos programmes éducatifs.

Nous ne saurions oublier tous les Experts nationaux venus de différents horizons et qui se sont acquittés de leur tâche avec compétence et dévouement.

A tous, nous réitérons la reconnaissance du Ministère de l'Education Nationale.

Nous terminons en souhaitant que tous les milieux éducatifs fassent une utilisation rationnelle de ces programmes éducatifs pour l'amélioration de la qualité de notre enseignement afin de faire de notre pays, la Côte d'Ivoire un pays émergent à l'horizon 2020, selon la vision du Chef de l'Etat, SEM Alassane OUATTARA.

Merci à tous et vive l'Ecole Ivoirienne!

Mandia CAMARA

LISTE DES SIGLES

2nd CYCLE DU SECONDAIRE GENERAL

A.P: Arts Plastiques

A.P.C: Approche Par les Compétences

A.P.F.C: Antenne de la Pédagogie et de la Formation Continue

ALL: Allemand

Angl: Anglais

C.M.: Collège Moderne

C.N.F.P.M.D: Centre National de Formation et de Production du Matériel Didactique

C.N.M.S: Centre National des Matériels Scientifiques

C.N.R.E: Centre National des Ressources Educatives

C.O.C: Cadre d'Orientation Curriculaire

D.D.E.N.: Direction Départementale de l'Education Nationale

D.R.E.N.: Direction Régionale de l'Education Nationale

DPFC: Direction de la Pédagogie et de la Formation Continue

E.D.H.C: Education aux Droits de l'Homme et à la Citoyenneté

E.P.S: Education Physique et Sportive

ESPA: Espagnol

Fr: Français

Hist- Géo: Histoire et Géographie

I.G.E.N : Inspection Générale de l'Education Nationale

L.M.: Lycée Moderne

L.MUN.: Lycée Municipal

M.E.N.: Ministère de l'Education Nationale

Math: Mathématiques

P.P.O: Pédagogie Par les Objectifs

S.V.T: Sciences de la Vie et de la Terre

P.C.: Physique-Chimie

TABLE DES MATIERES

N°	RUBRIQUES	PAGES
1.	MOT DU MINISTRE	1
2.	LISTE DES SIGLES	2
3.	TABLE DES MATIERES	3
4.	INTRODUCTION	4
5.	PROFIL DE SORTIE	5
6.	DESCRIPTION DU DOMAINE	5
7.	TABLEAU DE SPECIFICATION	6
8.	REGIME PEDAGOGIQUE	6
9.	CORPS DU PROGRAMME EDUCATIF	7-23
10.	GUIDE D'EXECUTION	24-52

INTRODUCTION

Dans son souci constant de mettre à la disposition des établissements scolaires des outils pédagogiques de qualité appréciable et accessibles à tous les enseignants, le Ministère de l'Education Nationale vient de procéder au toilettage des Programmes d'Enseignement.

Cette mise à jour a été dictée par :

- la lutte contre l'échec scolaire ;
- la nécessité de cadrage pour répondre efficacement aux nouvelles réalités de l'école ivoirienne ;
- le souci de garantir la qualité scientifique de notre enseignement et son intégration dans l'environnement ;
- l'harmonisation des objectifs et des contenus d'enseignement sur tout le territoire national.

Ce programme éducatif se trouve enrichi des situations. Une situation est un ensemble des circonstances contextualisées dans lesquelles peut se retrouver une personne. Lorsque cette personne a traité avec succès la situation en mobilisant diverses ressources ou habilités, elle a développé des compétences : on dira alors qu'elle est compétente.

La situation n'est donc pas une fin en soi, mais plutôt un moyen qui permet de développer des compétences ; ainsi une personne ne peut être décrétée compétente à priori.

Ce programme définit pour tous les ordres d'enseignement le profil de sortie, la définition du domaine, le régime pédagogique et le corps du programme de chaque discipline.

Le corps du programme est décliné en plusieurs éléments qui sont :

- * la compétence ;
- * le thème ;
- * la leçon ;
- * un exemple de situation;
- * un tableau à deux colonnes comportant respectivement :
- -les habiletés qui sont les plus petites unités cognitives attendues de l'élève au terme de son apprentissage ;
- -les contenus d'enseignement qui sont les notions à faire acquérir aux élèves et autour desquels s'élaborent les résumés.

Par ailleurs, les disciplines du programme sont regroupées en cinq domaines qui sont :

- le **Domaine des langues** qui comprend le Français, l'Anglais, l'Espagnol et l'Allemand ;
- le **Domaine des sciences et technologie** qui regroupent les Mathématiques, les Sciences de la Vie et de la Terre, la Physique-Chimie et les Technologies de l'Information et la Communication à l'Ecole ;
- le **Domaine de l'univers social** qui comprend l'Histoire et la Géographie, l'Education aux Droits de l'Homme et à la Citoyenneté et la Philosophie ;
- le **Domaine des arts** qui comprend : les Arts Plastiques et l'Éducation Musicale ;
- le **Domaine du développement éducatif, physique et sportif** qui est représenté par l'Education Physique et Sportive.

Toutes ces disciplines concourent à la réalisation d'un seul objectif final à savoir la formation intégrale de la personnalité de l'enfant. Toute idée de cloisonner les disciplines doit de ce fait être abandonnée.

L'exploitation optimale de ce programme recadré nécessite le recours à une pédagogie fondée sur la participation active de l'élève, le passage du rôle de l'enseignant, de celui de dispensateur des connaissances vers celui d'accompagnateur de l'élève dans l'acquisition patiente du savoir et le développement des compétences à travers les situations en prenant en compte le patrimoine national culturel par l'œuvre éducative.

STRUCTURE DU PROGRAMME EDUCATIF

I- PROFIL DE SORTIE

A la fin du second cycle de l'enseignement secondaire, l'apprenant doit avoir acquis les connaissances et les compétences lui permettant de/d':

- ✓ analyser la nature du mouvement du centre d'inertie d'un solide;
- ✓ appliquer les lois relatives aux champs et aux interactions ;
- √ appliquer les lois de Newton , les lois des courants continus et les lois de l'électromagnétisme ;
- ✓ traiter une situation se rapportant à un circuit RLC série soumis à une tension alternative sinusoïdale ;
- ✓ traiter une situation se rapportant aux réactions spontanées et provoquées.
- ✓ comprendre le comportement de la matière au niveau atomique ;
- ✓ traiter une situation se rapportant aux composés organiques ;
- ✓ interpréter les réactions d'estérification et d'hydrolyse ;
- ✓ interpréter la courbe de variation du pH au cours d'une réaction acide-base ;
- ✓ réaliser un dosage.

.

II- DESCRIPTION DU DOMAINE

La Physique-Chimie appartient au domaine des sciences. Ce domaine regroupe quatre disciplines qui sont :

- les Mathématiques ;
- la Physique-Chimie;
- les Sciences de la Vie et de la Terre ;
- les Technologies de l'Information et de la Communication à l'Ecole.

Les disciplines du domaine des sciences permettent à l'apprenant(e) d'acquérir une culture scientifique afin de comprendre son environnement et de s'adapter à l'évolution de la société.

La **Physique** est étymologiquement la *science de la nature*. Elle décrit à la fois de façon quantitative et conceptuelle les composants fondamentaux de l'univers, les forces qui s'y exercent et leurs effets.

Quant à la **Chimie**, elle a pour objet la connaissance des corps, leurs propriétés, leur action moléculaire les uns sur les autres et les transformations qui en résultent.

La physique et la Chimie développent des théories en utilisant l'outil mathématique pour décrire et prévoir l'évolution de système. En outre, la maîtrise des disciplines du domaine des sciences amène l'apprenant/l'apprenante à adopter un comportement responsable pour préserver l'environnement et améliorer son cade de vie.

III- REGIME PEDAGOGIQUE

En Côte d'Ivoire, nous prévoyons 33 semaines de cours pendant l'année scolaire.

Discipline	Nombre d'heures/semaine	Nombre d'heures/année	Pourcentage par rapport à l'ensemble des disciplines
PHYSIQUE – CHIMIE PREMIERE C	5,5h	181,5h	18,03%

IV- CORPS DU PROGRAMME EDUCATIF

COMPETENCE 1: TRAITER UNE SITUATION SE RAPPORTANT A LA MECANIQUE

THEME: MECANIQUE

LEÇON 1 : TRAVAIL ET PUISSANCE D'UNE FORCE DANS LE CAS D'UN MOUVEMENT DE TRANSLATION

EXEMPLE DE SITUATION D'APPRENTISSAGE

Sur le chemin de l'école, deux élèves de la 1ère C du Lycée Moderne 2 d'Agboville aperçoivent sur la berge du fleuve « AGBO » un tracteur qui doit tirer un camion qui a fait une chute dans ledit fleuve. L'un s'interroge en disant: « ce tracteur est-il assez puissant pour effectuer ce travail ? ». L'autre réplique : « cela dépend de la force que le tracteur peut appliquer au camion et de la hauteur de la chute!». Une discussion s'engage alors entre les deux élèves jusqu'à l'école.

Pour se mettre d'accord, ils décident avec leurs camarades de classe de s'informer sur le travail et la puissance d'une force puis d'utiliser leurs expressions.

HABILETES	CONTENUS
Définir	• une force constante.
Demin	• le travail d'une force constante lors d'un déplacement rectiligne.
Connaître	l'expression du travail d'une force constante lors d'un déplacement rectiligne
	l'unité de travail
Connaitre	l'expression du travail d'une force constante lors d'un déplacement quelconque
Déterminer	le travail d'une force constante
Connaître	l'expression du travail du poids d'un corps.
Déterminer	le travail du poids d'un corps.
Connaitre	l'expression du travail de la tension d'un ressort.
Déterminer	le travail de la tension d'un ressort.
Définir	la puissance d'une force constante.
	• l'expression de la puissance moyenne d'une force constante.
Connaitre	• l'unité de la puissance
	• l'expression de la puissance instantanée d'une force constante.
Déterminer	la puissance d'une force constante.
	les expressions :
	$W_{A \to B(\vec{F})} = \vec{F} \cdot \overrightarrow{AB} = F \times AB \times \cos \theta;$
Utiliser	$W_{A\to B}(\vec{P}) = mg(z_A - z_B);$
	$\mathcal{P}_{A\to B}(\vec{F}) = \frac{W_{A\to B}(\vec{F})}{t_B - t_A} ou \mathcal{P}(\vec{F}) = \vec{F} \cdot \vec{V}.$ $W_{A\to B}(\vec{F}) = -\frac{1}{2} \mathrm{k}(x_B^2 - x_A^2)$
	$W_{A \to B(\vec{F})} = -\frac{1}{2} k(x_B^2 - x_A^2)$

LEÇON 2 : TRAVAIL ET PUISSANCE D'UNE FORCE DANS LE CAS D'UN MOUVEMENT DE ROTATION AUTOUR D'UN AXE FIXE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de 1ère C au Lycée Mixte 1 de Yamoussoukro habite le quartier Kokrénou. Il emprunte le car de l'établissement pour se rendre au cours. En route, l'un des pneus du car crève. Pour dévisser les écrous de la roue, le chauffeur utilise une clé en croix mais il n'y parvient pas. Il utilise donc une barre de fer pour rallonger la clé; cette fois-ci, il réussit à enlever les écrous de la roue. L'élève est émerveillé par ce résultat. Une fois au lycée, il décide avec ses camarades de classe, de s'informer sur les caractéristiques du mouvement de rotation autour d'un axe fixe, du moment d'un couple de forces puis de déterminer le travail et la puissance d'une force dans un mouvement de rotation.

HABILETES	CONTENUS
Connaître	les caractéristiques du mouvement de rotation d'un solide autour d'un axe fixe : -abscisse curviligneabscisse angulairevitesse linéairevitesse angulaire.
Définir	un couple de forces.
Connaître	 L'expression du moment d'un couple de forces. L'expression du travail d'une force agissant sur un solide en rotation autour d'un axe fixe. L'expression de la puissance d'une force agissant sur un solide en rotation autour d'un axe fixe.
Déterminer	 le travail d'une force agissant sur un solide en rotation autour d'un axe fixe. la puissance d'une force agissant sur un solide en rotation autour d'un axe fixe.
Utiliser	les relations : $W_{(\vec{F})} = M_{\Delta}.\Theta$ $P = M_{\Delta}.\omega$

LEÇON 3: ENERGIE CINETIQUE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un groupe d'élèves de 1ère C du Lycée Moderne 1 d'Agboville assiste à un accident devant le portail principal. Un véhicule roulant à vive allure vient percuter violemment un pilier du préau. Le véhicule a causé d'importants dégâts matériels et est complètement froissé. L'un des élèves affirme que l'importance de ces dégâts est dû au fait que le véhicule possédait une énergie cinétique très grande au moment du choc. Pour en savoir davantage, les élèves décident avec leurs camarades de classe de s'informer sur l'énergie cinétique d'un solide en mouvement, de connaître son expression et d'appliquer le théorème de l'énergie cinétique.

HABILETES	CONTENUS
Définir	l'énergie cinétique d'un solide en mouvement dans un repère galiléen.
Connaitre	L'unité de l'énergie cinétique
	l'expression de l'énergie cinétique d'un solide en mouvement de :
Connaître	- translation dans un repère galiléen.
	- rotation autour d'un axe fixe.
	l'énergie cinétique dans le cas d'un mouvement de
Déterminer	- translation.
	- rotation
Enoncer	le théorème de l'énergie cinétique.
Appliquer	le théorème de l'énergie cinétique.
	les expressions
Utiliser	$E_{C} = \frac{1}{2} mv^{2}$ $E_{C} = \frac{1}{2} J_{\Delta} w^{2}$
	$E_{\rm C} = \frac{1}{2} J_{\Delta} w^2$

LEÇON 4: ENERGIE POTENTIELLE

EXEMPLE DE SITUATION D'APPRENTISSAGE

En partance pour l'école à 14h, un groupe d'élèves de 1ère C du Lycée Moderne 2 d'Agboville assiste à une scène sur la côte menant à la SODECI. Un camion remorque chargé de billes de bois ne pouvant plus monter la côte, se met à descendre de plus en plus vite et se retrouve au bas de la côte. Ayant frôlé la catastrophe, les élèves décident avec leurs camarades de classe, de faire des recherches aux fins de définir et de connaître les expressions des différentes énergies potentielles, de les déterminer puis de connaître quelques- unes de leurs applications.

HABILETES	CONTENUS
Définir	l'énergie potentielle de pesanteur.
Demin	• l'énergie potentielle élastique.
	• l'expression de :
Connaître	- l'énergie potentielle de pesanteur d'un système (solide + Terre)
	- l'énergie potentielle élastique d'un système (ressort + solide)
	• l'unité de l'énergie potentielle
	• l'énergie potentielle de pesanteur d'un solide.
Déterminer	• l'énergie potentielle élastique.
	• la variation de l'énergie potentielle d'un solide.
Citer	quelques applications de l'énergie potentielle.

LEÇON 5: ENERGIE MECANIQUE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Sur le chemin de l'école, un groupe d'élèves de 1ère C du Lycée Moderne 2 d'Agboville assiste à une scène sur la côte menant à la SODECI. Un grumier chargé de billes de bois ne pouvant plus monter la côte, se met à descendre de plus en plus vite et se retrouve au bas de la côte. Suite à cet incident, ils décident avec leurs camarades de classe, à partir des différentes énergies en présence, de définir l'énergie mécanique d'un solide, de la déterminer et d'appliquer sa conservation.

HABILETES	CONTENUS
Définir	l'énergie mécanique d'un solide.
	l'expression de :
Connaître	- l'énergie mécanique d'un système sans ressort.
	- l'énergie mécanique d'un système avec ressort.
Déterminer	l'énergie mécanique totale d'un système.
	la conservation de l'énergie mécanique dans les cas ci-dessous:
	- chute libre d'un solide;
Appliquer	- solide glissant sans frottement sur un plan incliné
Appliquel	- solide glissant sans frottement sur une piste de profil quelconque.
	- solide en rotation autour d'un axe fixe.
	- système avec ressort.
Montrer	la non conservation de l'énergie mécanique pour un système soumis à des forces de
MOHUEL	frottement.

COMPETENCE 2 : TRAITER UNE SITUATION SE RAPPORTANT A L'ELECTRICITE ET A L'ELECTRONIQUE

THEME: ELECTRICITE ET ELECTRONIQUE

LEÇON 1 : CHAMP ELECTROSTATIQUE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Pendant la période d'harmattan, un élève de 1ère C, au Lycée Municipal de Sikensi, fait une observation surprenante. Un soir, en enlevant sa chemise en tissu synthétique, il se produit des crépitements. Le lendemain, il informe ses camarades de classe. Voulant comprendre le phénomène qui a lieu, les élèves décident alors de s'informer sur l'espace champ et le vecteur champ électrostatique, de représenter les lignes de champ et le vecteur champ électrostatique.

HABILETES	CONTENUS
Définir	la force électrostatique.
	l'espace champ électrostatique.
	le vecteur champ électrostatique.
Connaître	la relation entre le champ électrostatique et la force électrostatique.
Commande	les caractéristiques du vecteur champ électrostatique.
Définir	une ligne de champ électrostatique.
	les lignes de champ électrostatique :
Représenter	- pour une charge ponctuelle q positive ;
Representer	- pour une charge ponctuelle q négative.
	les lignes de champ électrostatique entre deux plaques parallèles.
Définir	le spectre de champ électrostatique.
Représenter	le vecteur champ électrostatique crée en un point de l'espace par une charge ponctuelle.
Déterminer	les caractéristiques du vecteur champ électrostatique uniforme.
Représenter	le vecteur champ électrostatique uniforme.

LEÇON 2 : ENERGIE POTENTIELLE ELECTROSTATIQUE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève de la 1^{ème} C du Lycée Moderne d'Agboville présente à camarades de classe l'image ci-contre.

Désireux de comprendre le phénomène présenté par l'image, élèves décident de définir la différence de potentiel, de connaître les expressions du travail de la force électrostatique, de l'intensité du champ électrostatique uniforme, de l'énergie potentielle électrostatique puis de les déterminer.

ses

les

HABILETES	CONTENUS
Connaître	l'expression du travail de la force électrostatique dans un champ uniforme.
Définir	la différence de potentiel (d.d.p).
Connaitre	l'expression de l'énergie potentielle électrostatique.
Déterminer	l'énergie potentielle électrostatique d'une charge ponctuelle dans un champ électrostatique uniforme.
Utiliser	les relations : $W_{A\to B}(\vec{F}) = q\vec{E} \cdot \vec{AB} = q(V_A - V_B)$; $E_P = qV + Cte$; $E = \frac{ V_A - V_B }{d}$.
Connaître	le principe de fonctionnement d'un oscilloscope.

LEÇON 3 : PUISSANCE ET ENERGIE ELECTRIQUES

EXEMPLE DE SITUATION D'APPRENTISSAGE

Le professeur de Physique-Chimie de la 1ère C du Lycée Moderne de Tiassalé, informe ses élèves que la puissance consommée par son poste téléviseur est de 70W.

Désireux de savoir le rapport entre la puissance et l'énergie consommées par le poste téléviseur, les élèves décident de connaître l'expression de la loi d'Ohm, les notions de puissance et d'énergie reçues ou fournies , d'utiliser leurs expressions puis d'établir un bilan énergétique.

HABILETES	CONTENUS
Connaître	la loi d'Ohm :
	- pour un conducteur ohmique ;
	- pour un générateur.
Tracer	la caractéristique d'un électrolyseur.
Déterminer	la résistance interne et la force contre électromotrice (f.c.é.m) d'un électrolyseur.
Connaître	la loi d'Ohm pour un récepteur autre que le conducteur ohmique.
	la loi d'Ohm pour :
Appliquer	-un récepteur ;
	-un générateur
Connaître	la loi de Pouillet.
Appliquer	la loi de Pouillet.
	• les puissances générée et fournie par un générateur.
Définir	• la puissance reçue par un récepteur.
	• la puissance utile.
	les expressions de :
	- la puissance électrique reçue par un récepteur.
Connaître	- la puissance utile d'un récepteur.
	- la puissance générée par un générateur.
	- l'énergie électrique fournie par un générateur.
Définir	l'effet Joule.
	la puissance reçue par un électrolyseur.
	l'énergie reçue par un électrolyseur
	la puissance fournie par un générateur.
Déterminer	l'énergie fournie par un générateur.
Determiner	• le bilan énergétique.
	• le rendement d'un récepteur.
	le rendement d'un générateur.
	le rendement d'un circuit.
	les relations :
Utiliser	$P_r = RI^2$; $P_f = E'I + r'I^2$; $P_f = U_G.I = E.I - rI^2$
	$E_r = RI^2t \; ; \qquad \qquad E_r = E'It + r'I^2t \; ; \qquad \qquad E_f = EIt - rI^2t \label{eq:energy}$

LEÇON 4: LE CONDENSATEUR

EXEMPLE DE SITUATION D'APPRENTISSAGE

Dans le cadre d'une enquête découverte, un groupe d'élèves de la 1ère C du Lycée Municipal de Sikensi effectue des recherches sur des condensateurs, éléments électroniques se trouvant dans des appareils électroménagers tels que TV, Radio.... Surpris par la diversité des formes et le nombre important de ces éléments à l'intérieur des appareils, les élèves décident de s'informer sur les condensateurs, d'établir les lois d'association puis de calculer l'énergie stockée par un condensateur.

HABILETES	CONTENUS
Définir	un condensateur.
Connaître	le symbole d'un : - condensateur non polarisé ; - condensateur à capacité variable ; - condensateur électrolytique polarisé.
Interpréter	la charge et la décharge d'un condensateur.
Tracer	la courbe $Q_A=f(U_{AB})$
Déterminer	la capacité d'un condensateur.la capacité d'une association de condensateurs.
Connaître	l'unité de capacité.
Connaître	la relation entre la charge du condensateur et la tension à ses bornes.
Définir	 la tension nominale. la tension de claquage. Le champ disruptif.
Exploiter	un oscillogramme relatif à la charge ou à la décharge d'un condensateur.
Connaître	les lois d'association des condensateurs.
Appliquer	les lois d'association des condensateurs.
Connaître	les expressions de l'énergie stockée par un condensateur.
Utiliser	les relations : * $E = \frac{1}{2} CU^2$; * $E = \frac{1}{2} Q^2/C$; * $E = \frac{1}{2} QU$.

LECON 5: L'AMPLIFICATEUR OPERATIONNEL

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de $1^{\rm ère}$ C au Lycée Moderne d'Azaguié, échange avec son grand frère étudiant en BTS électronique. Il apprend que l'amplificateur opérationnel (AO) est un circuit intégré qui permet de réaliser des opérations mathématiques : addition, soustraction, intégration, dérivation, Le lendemain il informe ses camarades de classe. Afin de comprendre le fonctionnement de ce circuit intégré, les élèves décident de connaître les propriétés de l'AO, d'interpréter les caractéristiques U_s = $f(U_e)$ et d'établir la relation entre la tension d'entrée et la tension de sortie de quelques montages et d'analyser le comportement de l'AO.

HABILETES	CONTENUS
Définir	l'amplificateur opérationnel
Connaître	• le symbole de l'amplificateur opérationnel (A.O)
Commande	• les propriétés d'un A.O idéal
	les caractéristiques $u_s = f(u_e)$ des montages :
	- suiveur ;
Interpréter	- amplificateur inverseur ;
	- amplificateur non inverseur.
	- sommateur inverseur.
Etablir	les relations entre les tensions d'entrée et de sortie d'un :

	- suiveur ; - amplificateur inverseur ; - amplificateur non inverseur ;
	- sommateur inverseur.
Utiliser	l'amplificateur opérationnel en régime saturé : cas du comparateur.

COMPETENCE 3: TRAITER UNE SITUATION SE RAPPORTANT A L'OPTIQUE.

THEME: OPTIQUE

LEÇON 1: INTRODUCTION A L'OPTIQUE GEOMETRIQUE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Les élèves de 1èreC ont appris dans les classes antérieures quelques propriétés de la lumière (rayon lumineux, propagation rectiligne dans un milieu transparent et homogène, célérité).

Au cours de leurs recherches, ceux du Lycée Moderne d'Adzopé découvrent dans une revue scientifique que la lumière est une onde dont la propagation peut être représentée par une fonction sinusoïdale. Pour en savoir davantage, ils décident de définir une lumière monochromatique, la longueur d'onde, la fréquence d'une onde, de distinguer un faisceau convergent d'un faisceau divergent puis de déterminer une longueur d'onde.

HABILETES	CONTENUS
	- une source de lumière ;
	- un récepteur de lumière ;
	- un faisceau lumineux ;
	- un rayon lumineux ;
Définir	- un milieu de propagation ;
	- une lumière monochromatique ;
	- la célérité ;
	- la longueur d'onde ;
	- la fréquence d'une onde.
Définir	- un faisceau convergent ;
Denniii	- un faisceau divergent.
Distinguer	un faisceau convergent d'un faisceau divergent.
Connaître	l'expression de la longueur d'onde.
Déterminer	la longueur d'onde.

LEÇON 2: REFLEXION ET REFRACTION DE LA LUMIERE BLANCHE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Le professeur de Physique-Chimie de la 1ème C du Lycée Municipal de Sikensi, fait observer par ses élèves l'image cicontre représentant des jeux de lumière à l'ouverture des Jeux olympiques de Londres.

Emerveillés par les figures formées par la lumière et voulant en savoir davantage, les élèves entreprennent de s'informer sur les rayons lumineux, de connaître les lois de la réflexion et de la réfraction et d'expliquer la réflexion totale, puis d'en connaître quelques applications.

HABILETES	CONTENUS
Définir	• le rayon incident.
	• le rayon réfléchi.
Demin	• l'angle d'incidence.
	• le plan d'incidence.
Connaître	les lois de la réflexion.
Appliquer	les lois de la réflexion.
Définir	• le rayon réfracté.
Dennin	• l'angle de réfraction.
Connaître	les lois de la réfraction.
Connaitre	l'indice de réfraction absolu.
Déterminer	l'angle limite de réfraction.
Appliquer	les lois de la réfraction.
Déterminer	l'angle de réfraction limite.
Expliquer	la réflexion totale.
Connaître	quelques applications de la réflexion totale.

LEÇON 3 : LES LENTILLES MINCES

EXEMPLE DE SITUATION D'APPRENTISSAGE

Le professeur de Physique-Chimie de la 1ème C du Lycée Moderne d'Adzopé enflamme une touffe d'herbes sèches à l'aide d'une loupe placée au soleil. Pour comprendre le fait observé, les élèves décident de connaître les caractéristiques d'une lentille mince, de construire l'image d'un objet à travers une lentille mince puis d'appliquer le théorème des vergences.

HABILETES	CONTENUS
Définir	une lentille mince.
Distinguer	les différents types de lentilles minces.
Connaître	 les symboles des lentilles minces. les caractéristiques des lentilles minces : axe principal ; centre optique ; foyers principaux objet et image ; distances focales et vergences ; plans focaux, foyers secondaires.
Déterminer	les foyers objets et images.la distance focale.la vergence.
Connaître	les conditions de Gauss.
Construire	l'image d'un objet à travers une lentille mince.
Connaître	la formule de conjugaison.
Utiliser	la formule de conjugaison.
Déterminer	le grandissement.
Connaître	le théorème des vergences.
Appliquer	le théorème des vergences.

COMPETENCE 4: TRAITER UNE SITUATION SE RAPPORTANT A LA CHIMIE ORGANIQUE.

THEME: CHIMIE ORGANIQUE

LEÇON 1: GENERALITES SUR LES COMPOSES ORGANIQUES

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de 1ère C au Lycée Moderne de Tiassalé échange sur la composition des aliments avec le fils ainé de leur tuteur qui est étudiant en Chimie. Il leur apprend que le sucre contient du carbone. Le lendemain, ils informent leurs camarades de classe. Voulant en savoir davantage les élèves décident de définir un composé organique, de mettre en évidence l'élément carbone dans un composé et de déterminer la formule brute d'un composé organique.

HABILETES	CONTENUS
Définir	un composé organique.
Montrer	la présence de l'élément carbone dans un composé.
Connaître	les autres éléments présents dans les composés organiques
Déterminer	la composition centésimale massique d'un composé organique.
Utiliser	la relation $d = \frac{M}{29}$
Déterminer	la formule brute d'un composé organique.

LEÇON 2 : HYDROCARBURES SATURES : LES ALCANES

EXEMPLE DE SITUATION D'APPRENTISSAGE

Dans le cadre des activités du club scientifique de leur établissement, les élèves de la $1^{\text{ère}}$ C_1 du Lycée Moderne de Port-Bouet se rendent à la SIR. Lors de cette visite, ils apprennent que l'essence sans plomb, le gas-oil et le kérosène sont des mélanges d'alcanes. Intéressés par cette information et désireux d'en savoir davantage, ils s'engagent, de retour en classe à connaître la structure des alcanes, à nommer quelques alcanes et montrer leur intérêt.

HABILETES	CONTENUS
Définir	un alcane.
Connaître	 la structure des alcanes. la formule générale : des alcanes non cycliques ; des alcanes cycliques.
Connaître	l'isomérie de chaîne.
Ecrire	les formules brutes, semi-développées et développées de quelques alcanes.
Nommer	 un alcane à chaîne carbonée linéaire. un alcane à chaîne carbonée ramifiée. un alcane à chaîne carbonée cyclique. un dérivé substitué.
Interpréter	quelques réactions chimiques des alcanes : - combustion complète; - combustion incomplète - substitution.
Ecrire	 l'équation-bilan de la combustion complète et incomplète d'un alcane. l'équation-bilan d'une réaction de substitution.
Exploiter	l'équation - bilan : - de la combustion complète ou incomplète d'un alcaned'une réaction de substitution sur un alcane.
Dégager	 l'intérêt des alcanes: combustibles, carburants. l'intérêt des dérivés substitués. les dangers liés à l'utilisation des alcanes et de leurs dérivés

LEÇON 3: HYDROCARBURES INSATURES: ALCENES ET ALCYNES

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de 1ère C au Lycée Moderne BAD N'douci accompagne son au garage pour souder le pot d'échappement de sa voiture. Pour réaliser la soudure, le tôlier utilise deux bouteilles de gaz munies de tuyaux sur lesquels mentionnés pour l'une acétylène et dioxygène pour l'autre. Il s'informe auprès tôlier. Ce dernier lui apprend alors que les soudures sont faites grâce à la combustion de l'acétylène dans le dioxygène. Le lendemain, l'élève partage sa découverte avec ses camarades de classe. Désireux de comprendre ce

père sont du

processus, ils décident de connaître la structure des alcènes et des alcynes, d'en nommer quelques-uns et de montrer l'importance industrielle des composés insaturés.

HABILETES	CONTENUS
	• la structure:
Connaître	- des alcènes ;
	- des alcynes.
Comiaitie	• la formule générale:
	- des alcènes ;
	- des alcynes.
	les formules brutes, semi-développées et développées de :
Ecrire	- quelques alcènes ;
	- quelques alcynes.
Connaître	les règles de nomenclature des alcènes et des alcynes.
	• un alcène :
	- à chaîne carbonée linéaire ;
Nommer	- à chaîne carbonée ramifiée.
Nommer	• un alcyne :
	- à chaîne carbonée linéaire ;
	- à chaîne carbonée ramifiée.
Connaître	l'isomérie de position
Gomatic	l'isomérie Z – E
	• quelques réactions chimiques des alcènes :
	- réactions de combustion (complète et incomplète)
	- réactions d'addition
Connaître	- réactions de polymérisation
	 quelques réactions chimiques des alcynes
	- réactions de combustion (complète et incomplète)
	- réactions d'addition
	l'équation-bilan de la réaction :
-	- de combustion (complète et incomplète) d'un alcène et d'un alcyne.
Ecrire	- de la réaction d'addition de H ₂ , Br ₂ , HCl, et H ₂ O sur un alcène.
	- de la réaction de polymérisation.
	- de la réaction d'addition de H ₂ , Br ₂ , Cl ₂ et H ₂ O sur l'acétylène.
3.6	l'importance industrielle :
Montrer	- des alcènes et des alcynes ;
	- des polymères.

LEÇON 4: LE BENZENE

EXEMPLE DE SITUATION D'APPLICATION

Le père d'un élève en classe de 1ère C au Lycée Municipal 1 Attécoubé travaille dans une imprimerie où il est malheureusement exposé à des émanations de vapeur de benzène. Tombé malade, le médecin traitant informe la famille que son état est dû à son exposition à ce composé. Inquiet, l'élève informe ses camarades de classe. Ensemble ils décident de s'informer sur la structure du benzène, ses propriétés chimiques et sa toxicité.

HABILETES	CONTENUS
Connaître	• la structure du benzène.
	• les formules brute et développée du benzène.
	• les caractéristiques du noyau benzénique.
	les formules brutes et développées d'autres composés aromatiques :
	- phénol ;
Ecrire	- styrène ;
	- naphtalène ;
	- toluène.
Connaître	quelques propriétés chimiques du noyau benzénique :
	- réaction de substitution.
	- réaction d'addition.
Connaître	les isomères ortho, méta et para.
	les équations-bilans :
Ecrire	- des réactions de substitution.
	-des réactions d'addition.
	les équations - bilans:
Exploiter	- des réactions de substitution ;
	-des réactions d'addition.
Connaître	la toxicité du benzène.

LEÇON 5: PETROLE ET GAZ NATURELS

EXEMPLE DE SITUATION D'APPRENTISSAGE

Dans le cadre d'un exposé sur le pétrole et les gaz naturels, les élèves de la $1^{\rm ère}$ C_1 du Lycée Moderne 2 d'Abobo entreprennent des recherches. Ils découvrent que le pétrole brut doit être fractionné et raffiné pour obtenir la multitude de produits qui déterminent notre quotidien. Ils décident alors d'expliquer le fractionnement, le craquage et le reformage du pétrole brut, puis de montrer l'importance de quelques produits dérivés du pétrole et connaître leur impact sur l'environnement.

HABILETES	CONTENUS
Connaître	les opérations de base de l'industrie du pétrole et des gaz naturels :
	- fractionnement du pétrole brut
	- craquage
	- reformage
Expliquer	• le fractionnement du pétrole brut
	• le craquage et le reformage
Connaître	quelques produits dérivés du pétrole
Montrer	l'importance de quelques produits dérivés du pétrole
Connaître	l'impact de quelques produits dérivés du pétrole sur l'environnement.

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de 1ère C au Lycée Municipal Simone Ehivet Gbagbo de Yopougon découvre dans une revue scientifique qu'il existe des composés organiques dits oxygénés qui jouent un rôle très important dans la vie courante. De retour en classe, il informe ses camarades. Voulant en savoir davantage, et ensemble ils décident de connaître les formules générales de quelques composés organiques oxygénés, d'en nommer quelques-uns, d'écrire leurs formules semi-développées puis de dégager leur intérêt.

HABILETES	CONTENUS
Connaître	les formules générales de quelques composés organiques oxygénés : - alcool ; - éther-oxyde ; - aldéhyde ; - cétone ; - acide carboxylique ; - ester.
Connaître	les règles de nomenclature de quelques composés organiques oxygénés
Nommer	quelques composés organiques oxygénés : - alcool ; - éther-oxyde ; - aldéhyde ; - cétone ; - acide carboxylique ; - ester.
Ecrire	les formules semi-développées de quelques composés organiques oxygénés : - alcool ; - éther-oxyde ; - aldéhyde ; - cétone ; - acide carboxylique ; - ester.
Dégager	l'intérêt de quelques composés organiques oxygénés.

LEÇON 7: L'ETHANOL

EXEMPLE DE SITUATION D'APPRENTISSAGE

Dans le cadre des activités du club scientifique, les élèves de la 1ère C du lycée BAD de Soubré se rendent sur un chantier de fabrication de boisson traditionnelle appelée communément « KOUTOUKOU » dont la consommation abusive nuit à la santé de l'homme. Cette boisson contient une dose importante d'éthanol. Voulant en savoir davantage, les élèves, de retour en classe, décident d'expliquer les procédés d'obtention de l'éthanol et les dangers liés à la consommation abusive de boissons alcoolisées, d'identifier les produits de son oxydation puis d'exploiter les équation-bilans de ses réactions d'oxydation.

HABILETES	CONTENUS
	les procédés d'obtention de l'éthanol :
Expliquer	- hydratation de l'éthylène
	- fermentation des jus sucrés
Expliquer	les dangers liés à la consommation abusive de boissons alcoolisées.
Identifier	les produits de l'oxydation de l'éthanol.
Ecrire	• l'équation-bilan de la combustion de l'éthanol.
ECHIE	 les équations-bilans de l'oxydation ménagée de l'éthanol.
Exploiter	l'équation-bilan de la combustion de l'éthanol.
2	 les équations-bilans de l'oxydation ménagée de l'éthanol.

LEÇON 8: ESTERIFICATION ET HYDROLYSE D'UN ESTER.

EXEMPLE DE SITUATION D'APPRENTISSAGE

Lors d'une journée porte ouverte sur le thème «la chimie au quotidien» dans un lycée, un élève de la classe de 1ère C découvre dans un stand les essences de fruits. Le responsable de stand lui apprend que ces essences sont des molécules organiques appelées ester. Dans le souci de s'informer davantage avec ses camarades de classe sur ces molécules, ils se proposent de réaliser l'estérification entre un alcool et un acide carboxylique et l'hydrolyse d'un ester, de connaître la notion d'équilibre chimique et l'intérêt des esters.

HABILETES	CONTENUS
Définir	la réaction :
	- d'estérification ;
	- d'hydrolyse d'un ester.
	les caractéristiques de la réaction :
	- d'estérification ;
Connaître	- d'hydrolyse d'un ester.
	 Les facteurs dont dépendent les réactions d'estérification et
	d'hydrolyse d'un ester.
	les courbes de réactions :
Tracer	- d'estérification ;
	- d'hydrolyse d'un ester.
	les courbes des réactions :
Interpréter	- d'estérification ;
	- d'hydrolyse d'un ester.
Expliquer	La notion d'équilibre chimique.
Ecrire	l'équation-bilan d'une réaction d'estérification.
ECITIE	 l'équation-bilan d'une réaction d'hydrolyse d'un ester.
Ermleiten	l'équation-bilan d'une réaction d'estérification.
Exploiter	l'équation-bilan d'une réaction d'hydrolyse.
Définir	le rendement des réactions d'estérification et d'hydrolyse d'un ester.
Déterminer	le rendement des réactions d'estérification et d'hydrolyse d'un ester.

COMPETENCE 5: TRAITER UNE SITUATION SE RAPPORTANT A L'OXYDOREDUCTION

THEME: OXYDOREDUCTION

LEÇON 1: REACTIONS D'OXYDOREDUCTION EN SOLUTION AQUEUSE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un groupe d'élèves de la $1^{\text{ère}}$ C_2 du Lycée Moderne Agboville réalise une expérience : il immerge de la paille de fer dans une solution de sulfate de cuivre (II). Au bout de quelques minutes, les élèves observent sur la paille de fer un dépôt rouge brun et la décoloration de la solution de sulfate de cuivre (II). Désireux de savoir ce qui s'est réellement passé, les élèves cherchent à interpréter cette réaction, à écrire son équation-bilan et à définir les termes oxydation, réduction, oxydant et réducteur.

HABILETES	CONTENUS				
Intornactor	• la réaction entre l'ion argent et le métal cuivre.				
Interpréter	• la réaction entre l'ion cuivre II et le métal fer.				
Ecrire	les équation-bilans des réactions à partir des demi-équations électroniques.				
Définir	les termes :				
Dennin	- réducteur et oxydant ;				

	oxydation et réduction ;réaction d'oxydoréduction ;couple oxydant/réducteur.
Ecrire	les demi-équations électroniques de quelques couples oxydant/réducteur. (Ag+/Ag, Fe ²⁺ /Fe, Al ³⁺ /Al, Pb ²⁺ /Pb et Zn ²⁺ /Zn).
Exploiter	l'équation-bilan de la réaction chimique

LEÇON 2: CLASSIFICATION QUALITATIVE DES COUPLES OXYDANT/REDUCTEUR

EXEMPLE DE SITUATION D'APPRENTISSAGE

Lors d'une fête de l'excellence au Lycée Moderne Nimbo Bouaké, les élèves de 1^{ère} C ont constaté que leurs camarades élèves ayant consommé de la citronnade conservée toute une nuit dans un seau en zinc ont été intoxiqués, alors que ceux ayant consommé le même jus conservé dans un seau en cuivre n'ont pas eu de problème. Quelques élèves pensent que les ions zinc II pourraient être à l'origine de cette intoxication. Curieux de savoir la réaction qui a conduit à la formation de cette substance toxique, les élèves cherchent à interpréter quelques réactions d'oxydoréduction, à classer quelques couples oxydants/réducteurs et à déduire les réactions possibles.

HABILETES	CONTENUS
Intornactor	la réaction entre l'ion cuivre II et le métal zinc puis la réaction inverse.
Interpréter	 la réaction entre l'ion fer II et le métal zinc puis la réaction inverse.
Ecrire	les équation-bilans des réactions d'oxydoréduction qui ont lieu.
Classer	les couples oxydants/réducteurs (Ag+/Ag, Cu²+/Cu, Fe²+/Fe, Zn²+/Zn).
Déduire	les réactions possibles à partir de la classification.
Interpréter	l'action de l'ion hydronium H ₃ O+ sur quelques métaux (fer et zinc ;;;;).
Ecrire	l'équation-bilan de la réaction entre l'ion hydronium et le fer.
Indiquer	la place du couple (H ₃ O ⁺ /H ₂) dans la classification.
Exploiter	les équation-bilans des réactions d'oxydoréduction

LEÇON 3: CLASSIFICATION QUANTITATIVE DES COUPLES OXYDANT/REDUCTEUR

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un réparateur d'appareils électroménagers du quartier commerce de Niablé a fasciné un groupe d'élèves de la 1ère C du Lycée Nanan Kouakou Kouao de ladite ville avec l'expérience ci-contre.

Il insère une lame de cuivre et une lame de zinc dans une tomate. A l'aide d'un voltmètre, il mesure la différence de potentiel entre les deux lames. Il dit aux élèves qu'il vient de réaliser une pile. Fascinés par cette découverte et afin d'en savoir davantage, en classe, le groupe informe leurs camarades et ensemble, ils entreprennent de schématiser cette pile, d'expliquer son fonctionnement, de déterminer sa f.é.m. puis de schématiser d'autres piles.

HABILETES	CONTENUS			
Définir	la pile Daniell.			
Schématiser	la pile Daniell.			
Ecrire	les demi-équations aux électrodes.			
Déduire	l'équation-bilan de la réaction chimique qui a lieu.			
Expliquer	le fonctionnement de la pile Daniell.			
	d'autres piles :			
Cabámatian	• pile Pb/ Pb ²⁺ // Cu ²⁺ /Cu			
Schématiser	• pile Fe /Fe ²⁺ //Pb ²⁺ /Pb;			
	• pile Zn/ Zn ²⁺ //Fe ²⁺ /Fe.			
Ecrire	les équations bilan des réactions chimiques qui ont lieu.			

Définir	 le potentiel d'oxydoréduction pour : 		
	- une demi-pile à hydrogène ;		
Dellilli	- une demi-pile quelconque.		
	• la force électromotrice (f.é.m.) d'une pile.		
Classer	les couples oxydants/réducteurs à partir des potentiels normaux.		
Prévoir	les réactions possibles à partir potentiels normaux		
Déterminer	la force électromotrice (f.é.m.) d'une pile.		
Ermloitor	les équations aux électrodes		
Exploiter	les équations- bilans des réactions chimiques qui ont lieu.		
	le fonctionnement de quelques piles électrochimiques :		
	- pile Volta ;		
Expliquer	- pile Leclanché ;		
	- pile alcaline ;		
	- accumulateur.		

LEÇON 4: COUPLES OXYDANT/REDUCTEUR EN SOLUTION AQUEUSE. DOSAGE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Les élèves de la $1^{\rm ère}$ C du Lycée Moderne d'Akoupé ont découvert dans une revue scientifique que, l'alcooltest qui permet aux policiers de vérifier l'état d'ivresse d'un automobiliste, consiste en une réaction d'oxydoréduction entre l'éthanol et l'ion dichromate ($Cr_2O_7^{2-}$). Afin de vérifier cette information, ils décident de prévoir les réactions possibles à partir des potentiels normaux, de réaliser des dosages puis d'exploiter l'équation-bilan d'une réaction de dosage.

HABILETES	CONTENUS
	les demi-équations redox des couples oxydants/réducteurs :
	$- Cr_2O_7^{2-}/Cr^{3+};$
	- MnO ₄ -/Mn ²⁺ ;
Ecrire	$-F_{e^{3+}}/F_{e^{2+}};$
	- I ₂ /I-;
	- CH ₃ COOH/CH ₃ CH ₂ OH
	$ S_4 O_6^{2-} / S_2 O_3^{2-}$
	les équations-bilans des réactions d'oxydoréduction entre les couples suivants :
 Prévoir	- $Cr_2O_7^{2-}/Cr^{3+}$ et F_e^{3+}/F_e^{2+} et/ou MnO ₄ -/Mn ²⁺ et F_e^{3+}/F_e^{2+} ;
Flevon	- $Cr_2O_7^2$ -/ Cr^3 + et CH_3COOH/CH_3CH_2OH et/ou MnO_4 -/ Mn^2 + et CH_3COOH/CH_3CH_2OH
	$-I_2/I$ - et $S_4O_6^2$ - $/S_2O_3^2$ -
Ecrire	les équations-bilans des réactions d'oxydoréduction.
Réaliser	le dosage de l'ion Fer II par l'ion permanganate et/ou dosage du diiode I2 par l'ion
Realisei	thiosulfate S ₂ O ₃ ² -
Ecrire	l'équation-bilan de la réaction du dosage.
Déterminer	la concentration de la solution de titre inconnu.
Exploiter	l'équation-bilan d'une réaction chimique.
Dégager	l'intérêt d'un dosage.

LEÇON 5 : OXYDOREDUCTION PAR VOIE SECHE

EXEMPLE DE SITUATION D'APPRENTISSAGE

A l'occasion de la fête du nouvel an, des élèves de la $1^{\text{ème}}$ C du Lycée Classique d'Abidjan observent un feu d'artifices. Ce feu d'artifices est le résultat de réactions chimiques faisant intervenir divers composés solides (magnésium, oxyde ferrique (Fe₂O₃)....).

Les élèves sont émerveillés par l'éclat, la beauté des couleurs et des figures. Afin de montrer que ces réactions chimiques sont des réactions d'oxydoréduction. Ils entreprennent d'écrire les équation-bilans de ces réactions, de les interpréter et de définir le nombre d'oxydation.

HABILETES	CONTENUS	
	quelques réactions d'oxydoréduction par voie sèche :	
Interpréter	- oxydation du magnésium par le dioxygène ;	
Interpréter	- réduction de l'oxyde de cuivre II par le carbone ;	
	- réduction de l'oxyde ferrique par l'aluminium.	
Ecrire	les équations-bilan des réactions chimiques.	
Définir	l'oxydoréduction par voie sèche.	
Définir	le nombre d'oxydation.	
Identifier	une réaction d'oxydoréduction à partir des variations des nombres d'oxydation.	
Déterminer	le nombre d'oxydation d'un élément chimique.	

LEÇON 6: ELECTROLYSE

EXEMPLE DE SITUATION D'APPRENTISSAGE

Lors d'une visite d'une usine de fabrication de couverts de table, des élèves de la 1ère C du Lycée Municipal de Koumassi apprennent du guide que certains couverts (cuillères, fourchettes et couteaux) sont étamés par électrolyse d'une solution contenant des ions étain Sn²+. Pour comprendre ce phénomène, ils se proposent d'interpréter l'électrolyse de quelques solutions, d'écrire les équation-bilans des réactions chimiques et de connaître d'autres applications de l'électrolyse.

HABILETES	CONTENUS
	• l'électrolyse de la solution aqueuse d'acide sulfurique.
Interpréter	• l'électrolyse de la solution aqueuse de chlorure d'étain.
	• l'électrolyse de la solution aqueuse de chlorure de sodium.
Ecrire	les demi-équations aux électrodes.
Ecrire	les équation-bilans des réactions chimiques.
Comparer	les équation-bilans des réactions chimiques aux électrodes aux équation-bilans des
Comparer	réactions naturelles d'oxydoréduction.
Exploiter	les équation-bilans des réactions chimiques
Connaître	quelques applications de l'électrolyse.
Dégager	l'intérêt de l'électrolyse.

LECON 7: CORROSION ET PROTECTION DES METAUX

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en 1ère C au Lycée Départemental Abengourou a retrouvé une machette oubliée dans le champ de son père. Il constate que celle-ci est recouverte de rouille. Son voisin de classe informé, déclare avec assurance qu'il s'agit d'un phénomène de corrosion. Il veut néanmoins comprendre le phénomène. Il rend donc compte aux autres élèves de sa classe et ensemble ils entreprennent de s'informer sur le phénomène de corrosion puis d'expliquer les méthodes de protection des métaux.

HABILETES	CONTENUS		
Définir	la corrosion d'un métal.		
Expliquer	le phénomène de corrosion.		
Indiquer	les conditions favorisant la corrosion.		
	les méthodes de protection des métaux contre la corrosion :		
Expliquer	- protection électrochimique ;		
	- protection par revêtement.		

V-TABLEAU DE SPECIFICATION

Le tableau de spécification permet de pondérer, en pourcentage la durée qu'il convient d'accorder. Sur l'ensemble de l'année, à chacune des compétences .Le pourcentage accordé à chaque compétence est luimême reparti sur quatre niveaux taxonomiques, selon l'importance que l'enseignant doit accorder à la connaissance, à la compréhension, aux applications et au traitement.

Les tableaux de spécification sont très utiles pour la confection des outils d'évaluation. Ils indiquent à l'enseignant, le pourcentage des items qui doivent être consacré à telle compétence et, à l'intérieur de ces questions, la proportion respective des items de connaissances des items de compréhension, des items d'application et des items de traitement.

	TAUX DES DIFFERENTS NIVEAUX D'APPRENTISSAGE					
COMPETENCES	CONNAISSANCE :	COMPREHENSION:	APPLICATION:	TRAITEMENT:	TOTAL:	
COMPETENCES	%	%	%	%	%	
1	08,9	01,5	07,3	00	17,7	
2	11	01,8	10,4	04,9	28,1	
3	03	00	01,9	00,6	05,5	
4	06,1	02,7	02,4	10,7	21,6	
5	14,4	02,5	01,2	08,9	27	

GUIDE D'EXECUTION DU PROGRAMME EDUCATIF

I- EXEMPLE DE PROGRESSION (5,5h/semaine) POUR UNE ANNÉE SCOLAIRE DE 32 SEMAINES

PROGRESSION DE PREMIERE C

MOIS	SEMAINE	THEME	PHYSIQUE / 73 heures		THEME	CHIMIE / 50,5 heures		
SEPT	1 2 3 4		Travail et puissance d'une force dans le cas d'un mouvement de translation	6h		Généralités sur les composés organiques	3,5h	
ОСТ	5 6	MECANIQUE	Travail et puissance d'une force dans le cas d'un mouvement de rotation autour d'un axe fixe	6h	#IQUE	Hydrocarbures saturés : les alcanes	4h	
	7 8	MECAI	Energie cinétique	8h	CHIMIE ORGANIQUE	Hydrocarbures insaturés : les alcènes et les alcynes	4h	
NOV	9	_	Evaluation/Remédiation		ЕС	Evaluation/Remédiation		
	10		Energie cinétique (suite et fin)		≥	Le benzène	2h	
	11		Energie potentielle	2h	끙	Pétrole et gaz naturels	1h	
DEC	12 13		Energie mécanique	6h		Quelques composés oxygénés	4h	
	14		Champ électrostatique	4h		L'éthanol	2h	
	15	ш	Energie potentielle électrostatique	3h		Estérification et hydrolyse d'un		
JAN	16	2		ergio potentiono orostrostatique		ester	4h	
	17	IRONI	Puissance et énergie électriques	6h		Réactions d'oxydoréduction en solution aqueuse	4h	
	18	ည္က	Evaluation/Remédiation			Evaluation/Remédiation		
FEV	19		Le condensateur	6h		Réaction d'oxydoréduction en solution aqueuse (suite et fin)		
	20				NO.	Classification qualitative des couples oxydant / réducteur	5h	
MARS	21		L'amplificateur opérationnel	8h	OXYDOREDUCTION	Classification quantitative des couples oxydant / réducteur	3h	
IVIARO	22	□□			RE	Couples oxydant / réducteur en	1h	
	23) ()	solution aqueuse. Dosage	4h	
	24		Evaluation/Remédiation		×	Evaluation/Remédiation		
	25		Introduction à l'optique géométrique	2h		Ovydoróduation par voia ababa	2 Eh	
AVRIL	26		Réflexion, Réfraction de la lumière	on de la lumière 8h		Oxydoréduction par voie sèche	3,5h	
	27	뛿	blanche	OH		Electrolyse	4h	
	28	OPTIQU				•	411	
MAI	29	O	Les lentilles minces			Corrosion et protection des métaux	2,5h	
	30					Remédiation		
	31		REMEDIATION					
JUIN	32		INCINICULATION					

Le Coordonnateur National Disciplinaire

II- PROPOSITIONS D'ACTIVITES, SUGGESTIONS PEDAGOGIQUES ET MOYENS.

COMPETENCE 1: TRAITER UNE SITUATION SE RAPPORTANT A LA MECANIQUE.

THEME 1: MECANIQUE

LEÇON 1: TRAVAIL ET PUISSANCE D'UNE FORCE DANS LE CAS D'UN MOUVEMENT DE TRANSLATION (6 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Sur le chemin de l'école, deux élèves de la 1ère C du Lycée Moderne 2 d'Agboville aperçoivent sur la berge du fleuve « AGBO » un tracteur qui doit tirer un camion qui a fait une chute dans ledit fleuve. L'un s'interroge en disant: « ce tracteur est-il assez puissant pour effectuer ce travail ? ». L'autre réplique : « cela dépend de la force que le tracteur peut appliquer au camion et de la hauteur de la chute!». Une discussion s'engage alors entre les deux élèves jusqu'à l'école.

Pour se mettre d'accord, ils décident avec leurs camarades de classe de s'informer sur le travail et la puissance d'une force puis d'utiliser leurs expressions.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Travail d'une force constante lors d'un déplacement rectiligne	 Rappeler brièvement les propriétés d'un produit scalaire. Définir une force constante. Rappeler la notion de travail à partir d'exemples concrets et familiers. Définir le travail d'une force constante dans le cas d'un déplacement rectiligne. Donner l'unité de travail. NB: Insister sur l'inventaire et la 	Brainstorming	RessortsDynamomètresmassesmarquées
	schématisation des forces.		
Travail d'une force constante lors d'un déplacement quelconque	 Donner le travail élémentaire. Etablir le travail d'une force constante dans le cas d'un déplacement 		
Travail de la tension d'un ressort	 Faire rappeler l'expression de la tension d'un ressort à réponse linéaire. Utiliser le travail élémentaire pour déterminer graphiquement l'expression du travail de la tension d'un ressort : W_{A→B} = -1/2 k(x_B² - x_A²) (x : déformation du ressort) 	Démonstration	

• Faire rappeler la définition de la puissance moyenne. • Définir la puissance instantanée. • Donner les expressions de la puissance : - moyenne d'une force : $\mathcal{P}(\vec{F})_{A\to B} = \frac{W(\vec{F})_{A\to B}}{t_B - t_A}$ - instantanée d'une force : $P(\vec{F}) = \vec{F}.\vec{V}$ • Rappeler l'unité de puissance.	
--	--

LEÇON 2 : TRAVAIL ET PUISSANCE D'UNE FORCE DANS LE CAS D'UN MOUVEMENT DE ROTATION AUTOUR D'UN AXE FIXE (6 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de 1ère C au Lycée Mixte 1 de Yamoussoukro habite le quartier Kokrénou. Il emprunte le car de l'établissement pour se rendre au cours. En route, l'un des pneus du car crève. Pour dévisser les écrous de la roue, le chauffeur utilise une clé en croix mais il n'y parvient pas. Il utilise donc une barre de fer pour rallonger la clé; cette fois-ci, il réussit à enlever les écrous de la roue. L'élève est émerveillé par ce résultat. Une fois au lycée, il décide avec ses camarades de classe, de s'informer sur les caractéristiques du mouvement de rotation autour d'un axe fixe, du moment d'un couple de forces puis de déterminer le travail et la puissance d'une force dans un mouvement de rotation.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Caractéristiques du mouvement de rotation d'un solide autour d'un axe fixe - abscisse curviligne; - abscisse angulaire; - vitesse linéaire - vitesse angulaire	 Faire rappeler les grandeurs liées au mouvement de rotation d'un solide (abscisses curviligne et angulaire, vitesses angulaire et vitesse linéaire). Faire calculer des vitesses angulaire et linéaire. 	Questions/réponses	
Moment d'un couple de forces	 Faire rappeler le moment d'une force par rapport à un axe fixe. Définir un couple de forces. Définir le moment d'un couple de forces. Donner l'unité de couples de forces. NB: Traiter uniquement le cas de forces à intensité constante 	Questions/réponses	- Dispositif pour l'étude des moments - Masses marquées - Dynamomètres
Travail d'une force agissant sur un solide en rotation autour d'un axe fixe	 Rappeler le travail élémentaire. Définir le travail d'une force agissant sur un solide en rotation autour d'un axe fixe. Faire établir son expression : W(F) = M_Δ(F)θ 	Questions/réponses Démonstration	

Puissance d'une force agissant sur un solide en rotation autour d'un axe fixe	 Définir la puissance d'une force agissant sur un solide en rotation autour d'un axe fixe. Faire établir son expression : P = M_Δ (F̄)ω 	Démonstration	
--	---	---------------	--

LEÇON 3: ENERGIE CINETIQUE (8 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un groupe d'élèves de 1ère C du Lycée Moderne 1 d'Agboville assiste à un accident devant le portail principal. Un véhicule roulant à vive allure vient percuter violemment un pilier du préau. Le véhicule a causé d'importants dégâts matériels et est complètement froissé. L'un des élèves affirme que l'importance de ces dégâts est dû au fait que le véhicule possédait une énergie cinétique très grande au moment du choc. Pour en savoir davantage, les élèves décident avec leurs camarades de classe de s'informer sur l'énergie cinétique d'un solide en mouvement, de connaître son expression et d'appliquer le théorème de l'énergie cinétique.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	METHODES ET TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Définition de l'énergie cinétique d'un solide en mouvement de translation dans un repère galiléen	• Mesurer la vitesse v d'une bille en fonction de la hauteur h de chute ou exploiter l'enregistrement du mouvement de chute libre d'une bille pour établir la relation : \[\frac{1}{2} \text{mv}^2 = \text{m. g. h} \]	Expérimentation Travail individuel Travail de groupe Exploitation	
	 Définir l'énergie cinétique. Donner l'expression de l'énergie cinétique d'un solide en mouvement de translation. Faire rappeler l'unité de l'énergie cinétique. 	Discussion dirigée	- Dispositif d'étude de la chute libre
Energie cinétique d'un solide en mouvement de rotation autour d'un axe fixe	Donner l'expression de l'énergie cinétique d'un solide en mouvement de rotation.	Questions/réponses	Enregistrement du mouvement de chute libre
Moment d'inertie d'un anneau circulaire Moment d'inertie d'un cylindre creux Moment d'inertie d'une sphère pleine Moment d'inertie d'un disque homogène	 Définir le moment d'inertie d'un solide par rapport à un axe fixe. Donner son unité. Donner les expressions de quelques moments d'inertie : moment d'inertie d'un anneau circulaire; moment d'inertie d'un cylindre creux; moment d'inertie d'une sphère pleine; moment d'inertie d'un disque homogène 	Discussion dirigée	d'une bille - Dispositif de la chute sur un plan incliné avec frottement (chute ralentie) - Série d'exercices

	D 1.17 \ 1.17 \		
	 Enoncer le théorème de l'énergie 		
	cinétique .		
	Donner l'expression :	Questions/réponses	
	$\Delta E_C = E_{CB} - E_{CA} = \sum W_{A \to B}(\vec{F})$, ,	
Théorème de l'énergie	 Faire vérifier le théorème de l'énergie 		
cinétique	cinétique.		
emenque	 Faire utiliser le théorème de l'énergie 		
	cinétique dans la résolution de		
	quelques exercices de mécanique.		
	 Donner une méthode de résolution 		
	d'un problème de mécanique.		

LEÇON 4 : ENERGIE POTENTIELLE (2 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

En partance pour l'école à 14h, un groupe d'élèves de 1ème C du Lycée Moderne 2 d'Agboville assiste à une scène sur la côte menant à la SODECI. Un camion remorque chargé de billes de bois ne pouvant plus monter la côte, se met à descendre de plus en plus vite et se retrouve au bas de la côte. Ayant frôlé la catastrophe, les élèves décident avec leurs camarades de classe, de faire des recherches aux fins de définir et de connaître les expressions des différentes énergies potentielles, de les déterminer puis de connaître quelques- unes de leurs applications.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Energie potentielle de pesanteur	 Présenter des situations mettant en évidence l'énergie d'un corps lié à sa position par rapport au sol. Faire rappeler la définition l'énergie potentielle d'un solide dans le champ de pesanteur uniforme. Donner son expression. Faire calculer des énergies potentielles de pesanteur en choisissant différentes références. Faire calculer la variation de l'énergie potentielle de pesanteur. N.B: Insister sur la notion de référence. 	Expérimentation Observation Questions/réponses	- Billes - Ressort - Pendule simple
Energie potentielle élastique	 Définir l'énergie potentielle élastique : Epé=1/2kx² (x = déformation du ressort). Faire déterminer des énergies potentielles élastiques avec des références différentes. Faire calculer la variation de l'énergie potentielle élastique. N.B: Insister sur la notion de référence. 	Questions/réponses	- Un plan incliné
Applications de l'énergie potentielle	Citer quelques applications de l'énergie potentielle.	Questions/réponses	

LEÇON 5 : ENERGIE MECANIQUE (6 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Sur le chemin de l'école, un groupe d'élèves de 1ère C du Lycée Moderne 2 d'Agboville assiste à une scène sur la côte menant à la SODECI. Un grumier chargé de billes de bois ne pouvant plus monter la côte, se met à descendre de plus en plus vite et se retrouve au bas de la côte. Suite à cet incident, ils décident avec leurs camarades de classe, à partir des différentes énergies en présence, de définir l'énergie mécanique d'un solide, de la déterminer et d'appliquer sa conservation.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Energie mécanique d'un solide	 Faire exploiter les résultats du TP sur la chute libre pour définir l'énergie mécanique d'un solide. (Le professeur choisira une référence de l'énergie potentielle de pesanteur). Donner les expressions de : l'énergie mécanique d'un système sans ressort. l'énergie mécanique d'un système avec ressort. 	Expérimentation Exploitation Questions/réponses	
Conservation de l'énergie mécanique d'un solide	Amener les apprenants à montrer expérimentalement la conservation de l'énergie mécanique d'un solide à partir de l'exploitation des résultats des mesures du TP sur la chute libre. (Le professeur choisira une référence de l'énergie potentielle de pesanteur) Préciser les conditions de la conservation de l'énergie mécanique.	Expérimentation Exploitation Questions/réponses	- Mesures du T.P de la chute libre -
Application de la conservation de l'énergie mécanique d'un solide dans les cas suivants : - chute libre d'un solide; - solide glissant sans frottement sur : . un plan incliné . une piste de profil quelconque - solide en rotation - système (ressort + masse).	 Résoudre des exercices en utilisant la conservation de l'énergie mécanique dans les cas suivants : chute libre d'un solide ; solide glissant sans frottement sur : un plan incliné une piste de profil quelconque solide en rotation système (ressort + masse) 	Questions/réponses Discussion dirigée Travail individuel	Enregistrement du mouvement d'un pendule élastique
Non conservation de l'énergie mécanique :	 Préciser les causes de la non conservation de l'énergie mécanique. Amener les apprenants (es) à analyser le cas des forces de frottements. 	Discussion dirigée	

COMPETENCE 2: TRAITER UNE SITUATION SE RAPPORTANT A L'ELECTRICITE ET A L'ELECTRONIQUE

THEME: ELECTRICITE ET ELECTRONIQUE

LEÇON 1: CHAMP ELECTROSTATIQUE (4 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Pendant la période d'harmattan, un élève de 1ère C, au Lycée Municipal de Sikensi, fait une observation surprenante. Un soir, en enlevant sa chemise en tissu synthétique, il se produit des crépitements. Le lendemain, il informe ses camarades de classe. Voulant comprendre le phénomène qui a lieu, les élèves décident alors de s'informer sur l'espace champ et le vecteur champ électrostatique, de représenter les lignes de champ et le vecteur champ électrostatique.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Force électrostatique - Mise en évidence - Définition	 Amener les apprenants à réaliser l'interaction entre deux charges de même signes ou de signes opposés. Faire mettre en évidence la force électrostatique entre deux charges ponctuelles. Amener les apprenants à définir la force électrique entre deux charges ponctuelles (qualitativement). 	Expérimentation Observation Questions/réponses	
Espace champ électrostatique Vecteur champ électrostatique - Définition - Caractéristiques	 Amener les apprenants à définir l'espace champ électrostatique. Définir le vecteur champ électrostatique en fonction de la force électrostatique : \vec{E} = \vec{\vec{F}}{q}. Préciser les caractéristiques du vecteur champ électrostatique. Donner l'unité de la valeur du vecteur champ électrostatique. 	Discussion dirigée Questions/réponses	- Machine de Whimshurst - Cuve rhéographique - Bâtons de verre d'ébonite - Soie - Peau de chat ou tissu
Lignes de champ - Définition - Exemples de lignes . Lignes de champ pour q positif . Lignes de champ pour q négatif	 Faire visualiser les lignes de champ crées par : une charge ponctuelle (q positif et q négatif). deux plaques métalliques parallèles chargées (champ uniforme). Définir une ligne de champ. Amener les apprenants à définir le spectre électrostatique. Faire représenter le vecteur champ électrostatique créé en un point de l'espace par une charge ponctuelle. 	Expérimentation Observation Questions/réponses	ou tissu synthétique - Pendule électrostatique

	Faire visualiser les lignes de champ électrostatique créé par deux plaques métalliques parallèles.	
Champ	Faire représenter des lignes de champ	Expérimentation
électrostatique	entre les deux plaques .	
uniforme	Préciser les caractéristiques du vecteur	Observation
- Visualisation des	champ électrostatique à l'intérieur des	
lignes de champ	deux plaques.	Questions/réponses
- caractéristiques du	Montrer que le vecteur champ	
vecteur champ	électrostatique à l'intérieur des deux	
électrostatique	plaques est uniforme.	
	Faire représenter le vecteur champ	
	électrostatique uniforme à l'intérieur	
	des deux plaques	

LEÇON 2 : ENERGIE POTENTIELLE ELECTROSTATIQUE (3 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève de la 1^{ème} C du Lycée Moderne d'Agboville présente à ses camarades de classe l'image ci-contre.

Désireux de comprendre le phénomène présenté par l'image, les élèves décident de définir la différence de potentiel, de connaître les expressions du travail de la force électrostatique, de l'intensité du champ électrostatique uniforme, de l'énergie potentielle électrostatique puis de les déterminer.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Travail de la force électrostatique dans un champ uniforme	 Mettre en évidence et tracer les lignes équipotentielles d'un champ électrostatique uniforme. Calculer le travail de la force s'exerçant sur une charge ponctuelle dans un champ électrostatique uniforme. W_{A→B}(F) = qE · AB = q(V_A - V_B) 	Expérimentation Exploitation Questions/réponses	
Différence de potentiel (d.d.p)	Définir la différence de potentiel (d.d.p) entre deux points d'un champ à partir du travail de la force électrostatique.	Questions/réponses	- Machine de Whimshurst - Cuve rhéographique
Valeur du vecteur champ électrostatique	 Amener les apprenants à établir expérimentalement la relation : E = \frac{ V_A - V_B }{d} Donner la deuxième unité de la valeur E du vecteur champ électrostatique. Rappeler le principe de fonctionnement d'un oscilloscope comme application d'un champ uniforme. 	Expérimentation Exploitation Travail de groupe	- Alimentation continue

	 Définir l'énergie potentielle 		
Energie potentielle	électrostatique.		
électrostatique	• Donner son expression : $E_{Pe} = qV + Cte$		
- Définition	 Faire calculer des variations d'énergie 	Questions/réponses	
- Expression	potentielle électrostatique avec des		
- Choix d'une référence	références différentes.		
	N .B: insister sur la notion de référence		

LEÇON 3: PUISSANCE ET ENERGIE ELECTRIQUES (6 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Le professeur de Physique-Chimie de la 1ère C du Lycée Moderne de Tiassalé, informe ses élèves que la puissance consommée par son poste téléviseur est de 70W.

Désireux de savoir le rapport entre la puissance et l'énergie consommées par le poste téléviseur, les élèves décident de connaître l'expression de la loi d'Ohm, les notions de puissance et d'énergie reçues ou fournies 7 d'utiliser leurs expressions puis d'établir un bilan énergétique.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Loi d'Ohm pour : - un conducteur ohmique - un générateur	 Faire rappeler la loi d'Ohm pour : - un conducteur ohmique ; - un générateur. Rappeler la caractéristique de la pile E(f.é.m) et r(résistance interne). Donner les schémas équivalents d'un générateur réel. 	Questions/réponses Discussion dirigée	Dipôles passifset actifsOscilloscopeAlimentationcontinue
Etude expérimentale de la caractéristique d'un électrolyseur - Tracé de la courbe - loi d'Ohm pour un récepteur	 Faire tracer la caractéristique U_{AB} = f(I) d'un électrolyseur. Amener les apprenants à déterminer la force contre électromotrice (f.c.é.m) de l'électrolyseur et la pente de la courbe linéarisée (résistance interne de l'électrolyseur). Etablir la loi d'Ohm pour un électrolyseur. 	Expérimentation Travail de groupe Travail individuel Exploitation	
Loi de Pouillet	 Faire établir la loi de Pouillet pour un circuit composé d'un générateur en série avec un électrolyseur et un conducteur ohmique. Généraliser la loi de Pouillet. 	Questions/réponses	

Puissance et énergie électriques reçues par un récepteur - Cas du conducteur ohmique - Cas d'un récepteur (électrolyseur ou d'un moteur) - puissance reçue - Puissance utile - Effet Joule	 Rechercher les limites de fonctionnement d'un dipôle en utilisant sa puissance maximale supportable. Définir la puissance reçue par un récepteur (électrolyseur ou moteur). Définir la puissance utile d'un récepteur. Montrer que la somme des puissances reçues est égale à la somme des puissances fournies. Déterminer le rendement d'un récepteur. Montrer l'existence-de l'effet Joule. Donner l'expression de l'énergie reçue par un récepteur. 	Questions/réponses Discussion dirigée
Puissance et énergie fournies par un générateur - Puissance fournie - Puissance générée - Effet Joule	 Définir les puissances générée et fournie. Montrer l'existence de l'effet Joule. Déterminer le rendement du générateur. 	Questions/réponses Discussion dirigée
Bilan énergétique	 Montrer que la somme des puissances reçues est égale à la somme des puissances fournies. Déterminer le rendement d'un circuit. 	Questions/réponses Discussion dirigée

LEÇON 4: LE CONDENSATEUR (6 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Dans le cadre d'une enquête découverte, un groupe d'élèves de la 1ère C du Lycée Municipal de Sikensi effectue des recherches sur des condensateurs, éléments électroniques se trouvant dans des appareils électroménagers tels que TV, Radio.... Surpris par la diversité des formes et le nombre important de ces éléments à l'intérieur des appareils, les élèves décident de s'informer sur les condensateurs, d'établir les lois d'association puis de calculer l'énergie stockée par un condensateur.

Contenus	CONSIGNES POUR CONDUIRE LES ACTIVITES	Techniques pédagogiques	Moyens et supports didactiques
Définition d'un condensateur	Donner la définition d'un condensateur. Présenter différents types de condensateurs : - condensateurs non polarisés - condensateur à capacité variable - condensateur électrolytique	Observation Questions/réponses	- Divers condensateurs générateur - Galvanomètre à (zéro
	polarisé		central)

Symbole: - d'un condensateur non polarisé - d'un condensateur à capacité variable - d'un condensateur électrolytique polarisé	Donner les symboles des différents types de condensateurs : - condensateurs non polarisés - condensateur à capacité variable - condensateur électrolytique polarisé	Questions/réponses	- Condensateur - Commutateur - Fils de connexion - Maquette CNMS « charge et décharge d'un condensateur »
Charge et décharge d'un condensateur	 Réaliser la charge et la décharge d'un condensateur. Faire visualiser la charge et la décharge à l'oscilloscope. Interpréter la courbe obtenue. 	Expérimentation Travail de groupe	- Oscilloscope.
Capacité d'un condensateur :	 Réaliser la charge d'un condensateur à courant constant. Faire relever la tension U_{AB} en fonction du temps. 	Expérimentation	
 Etude expérimentale (Tracé de la courbe q_A = f(U_{AB}), Relation entre Q et U); Unité de capacité; Limite d'utilisation d'un condensateur. 	 Faire tracer la courbe Q_A = f(U_{AB}). En déduire la capacité C du condensateur. Donner l'unité de capacité. Définir la tension nominale. Définir la tension de claquage d'un condensateur et le champ disruptif. Visualiser la charge et la 	Travail ide groupe Questions/réponses	
Condensateur de faible capacité	 décharge d'un condensateur à l'oscilloscope. Visualiser la charge à courant constant d'un condensateur de faible capacité à l'oscilloscope. Déduire de la courbe U_{AB} = f(t) (à l'oscilloscope) la capacité C du condensateur. 	Expérimentation Travail ide groupe Questions/réponses	
Lois d'association de deux condensateurs	 Pour une association en parallèle de deux condensateurs : démontrer la relation C = C₁ + C₂ vérifier expérimentalement cette relation C = C₁ + C₂ Pour une association de deux condensateurs en série, donner la relation C = C₁·C₂/C₁+C₂ 	Démonstration	

Energie stockée par un condensateur	 Mettre en évidence l'énergie stockée par un condensateur. Citer quelques utilisations des condensateurs en tant que réservoir d'énergie. Exemple : alimenter un générateur de mélodie, un moteur ou un LED (avec une résistance de protection) à l'aide d'un condensateur chargé. Donner l'expression de l'énergie stockée par un condensateur. 	Expérimentation Questions/réponses	
--	--	-------------------------------------	--

LEÇON 5: L'AMPLIFICATEUR OPERATIONNEL (8 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de $1^{\rm ère}$ C au Lycée Moderne d'Azaguié, échange avec son grand frère étudiant en BTS électronique. Il apprend que l'amplificateur opérationnel (AO) est un circuit intégré qui permet de réaliser des opérations mathématiques : addition, soustraction, intégration, dérivation, Le lendemain il informe ses camarades de classe. Afin de comprendre le fonctionnement de ce circuit intégré, les élèves décident de connaître les propriétés de l'AO, d'interpréter les caractéristiques U_s = $f(U_e)$ et d'établir la relation entre la tension d'entrée et la tension de sortie de quelques montages et d'analyser le comportement de l'AO.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Définition de l'amplificateur opérationnel (A.O)	 Donner la définition de l'amplificateur opérationnel. Décrire l'amplificateur opérationnel. 	Observation Travail de groupe	- A. O et accessoires - Oscilloscope - Alimentation - Doc n° 1069 - A. O et accessoires
Symbole de l'A.O	 Schématiser l'amplificateur opérationnel. 	Schématisation	
Propriétés de l'amplificateur opérationnel	Donner les propriétés d'un A.O. idéal.	Questions/réponses	
Amplificateur	 Réaliser les montages suivants: le montage suiveur; le montage amplificateur inverseur; le montage amplificateur non 	Expérimentation	
opérationnel en régime linéaire - Suiveur	inverseur; - Sommateur inverseur	Travail de groupe	
- Amplificateur inverseur - Amplificateur non	 Relever les couples (u_e, u_s). Tracer les caractéristiques u_S= f(u_e) pour chacun des montages. 	Exploitation	
inverseur - Sommateur inverseur	 Visualiser les caractéristiques à l'oscilloscope Exprimer par le calcul, la tension u_s en fonction de u_e pour chaque montage. 	Travail individuel	

Amplificateur opérationnel en régime saturé : le Comparateur	 Réaliser le montage comparateur. Donner une application pratique du montage comparateur. 	Expérimentation Travail de groupe	
	Exemple : Régulateur de température, etc.		

COMPETENCE 3 : TRAITER UNE SITUATION SE RAPPORTANT A L'OPTIQUE.

THEME: OPTIQUE

LEÇON 1: INTRODUCTION A L'OPTIQUE GEOMETRIQUE (2h).

EXEMPLE DE SITUATION D'APPRENTISSAGE

Les élèves de 1^{ère}C ont appris dans les classes antérieures quelques propriétés de la lumière (rayon lumineux, propagation rectiligne dans un milieu transparent et homogène, célérité).

Au cours de leurs recherches, ceux du Lycée Moderne d'Adzopé découvrent dans une revue scientifique que la lumière est une onde dont la propagation peut être représentée par une fonction sinusoïdale. Pour en savoir davantage, ils décident de définir une lumière monochromatique, la longueur d'onde, la fréquence d'une onde, de distinguer un faisceau convergent d'un faisceau divergent puis de déterminer une longueur d'onde.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
 Source de lumière; Récepteur de lumière; Faisceau lumineux; Rayon lumineux; Milieu de propagation; Lumière monochromatique; Célérité; Longueur d'onde; Fréquence. 	Donner les définitions des termes suivants : source de lumière, récepteur de lumière, faisceau lumineux, rayon lumineux ; milieu de propagation, lumière monochromatique, célérité, longueur d'onde, et fréquence.	Brainstorming Questions/réponses	- Sources
- Faisceau convergent ; - Faisceau divergent.	 Faire réaliser des faisceaux parallèles, convergents et divergents. Faire réaliser un pinceau lumineux. Amener les élèves à : définir un faisceau convergent et un faisceau divergent ; distinguer un faisceau convergent d'un faisceau divergent 	Expérimentation Questions/réponses	lumineuses - Lentilles - Prisme - Source Laser
Longueur d'onde	 Définir une onde. Donner l'expression de la longueur d'onde. Donner l'unité légale de la longueur d'onde. 	Questions/réponses	

LEÇON 2: REFLEXION ET REFRACTION DE LA LUMIERE BLANCHE (8 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Le professeur de Physique-Chimie de la 1^{ème} C du Lycée Municipal de Sikensi, fait observer par ses élèves l'image cicontre représentant des jeux de lumière à l'ouverture des Jeux olympiques de Londres.

Emerveillés par les figures formées par la lumière et voulant en savoir davantage, les élèves entreprennent de s'informer sur les rayons lumineux, de connaître les lois de la réflexion et de la réfraction et d'expliquer la réflexion totale, puis d'en connaître quelques applications.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Lois de la réflexion	 Vérifier expérimentalement les lois de la réflexion (TP). Donner les définitions suivantes : 	Expérimentation Exploitation	
- Première loi - Deuxième loi	 Donner les definitions suivantes : rayon incident ; rayon réfléchi ; angle d'incidence ; 	Questions/réponses	
	 plan d'incidence. Vérifier expérimentalement les lois de la réfraction (TP) 		
Lois de la réfraction - Première loi - Deuxième loi - Indice de réfraction	Donner les définitions suivantes : - rayon réfracté ; - angle de réfraction ; - indice de réfraction absolu ;	Expérimentation	- Coffret
absolu - Angle limite de réfraction	 angle limite de réfraction. Vérifier expérimentalement et par calcul que le passage d'un milieu plus réfringent vers un milieu moins 	Exploitation Questions/réponses	- Source Laser
Réflexion totale	 réfringent n'est pas toujours possible. Déterminer l'angle de réfaction limite d'une substance. Mettre en évidence la réflexion totale. Définir l'indice relatif d'un milieu par rapport à un autre Réaliser une fontaine lumineuse si l'on possède une source Laser. 	Questions/Teponses	

LEÇON 3: LES LENTILLES MINCES (8 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Le professeur de Physique-Chimie de la 1ème C du Lycée Moderne 3 d'Agboville enflamme une touffe d'herbes sèches à l'aide d'une loupe placée au soleil. Pour comprendre le fait observé, les élèves décident de connaître les caractéristiques d'une lentille mince, de construire l'image d'un objet à travers une lentille mince puis d'appliquer le théorème des vergences.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Définition des lentilles Différents types de lentilles minces et leurs symboles	 Présenter différents types de lentilles minces. Définir une lentille mince. Distinguer les différents types de lentilles minces. Donner les symboles des deux types de lentilles. 	Observation Travail de groupe	
Caractéristiques des lentilles minces - Axe principal, - Centre optique - Foyers principaux	 Mettre en évidence expérimentalement les foyers principaux et quelques rayons particuliers. Tracer les différents rayons particuliers pour les lentilles minces convergentes 	Expérimentation Travail individuel	
objet et image - Distances focales et vergences - Plans focaux, foyers secondaires	et divergentes.Déterminer l'image d'un objet par une lentille mince.	Exploitation	
Formule de conjugaison Grandissement	 Vérifier expérimentalement la formule de conjugaison. Vérifier expérimentalement la relation du grandissement. Retrouver la formule de conjugaison par calcul. 	Expérimentation Démonstration	CoffretoptiqueBanc optiqueet accessoiresAppareilphotographique
Distance focale d'une lentille convergente	 Déterminer la distance focale d'une lentille mince convergente par divers méthodes : Objet à l'infini ; méthode de Silberman ; autocollimation ; méthode de Bessel. Faire comparer les différentes valeurs trouvées et tirer une conclusion. 	Expérimentation Travail de groupe	
Image d'un objet à travers une lentille mince - Conditions de Gauss - Trajet des rayons particuliers	 Enoncer les conditions de Gauss. Faire représenter l'image d'un objet à travers une lentille mince (lentilles convergente et divergente) 	Schématisation	
Théorème des vergences	Donner le théorème de vergence.	Questions/réponses	

COMPETENCE 4: TRAITER UNE SITUATION SE RAPPORTANT A LA CHIMIE ORGANIQUE.

THEME: CHIMIE ORGANIQUE

LEÇON 1: GENERALITES SUR LES COMPOSES ORGANIQUES (3,5 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de 1ère C au Lycée Moderne de Tiassalé échange sur la composition des aliments avec le fils ainé de leur tuteur qui est étudiant en Chimie. Il leur apprend que le sucre contient du carbone. Le lendemain, ils informent leurs camarades de classe. Voulant en savoir davantage les élèves décident de définir un composé organique, de mettre en évidence l'élément carbone dans un composé et de déterminer la formule brute d'un composé organique.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Définition d'un composé organique	Mettre en évidence le carbone dans les composés organiques : par pyrolyse du sucre ou du bois ; par combustion du butane ou de l'éthanol. Amener les apprenants à définir un composé organique. Citer d'autres éléments présents dans les composés organiques (hydrogène, oxygène, azote).	Expérimentation Exploitation Questions – réponses Discussion dirigée	- Matériel de combustion - Corps organiques (sucre, sciure
Composition centésimale massique d'un composé organique	Faire déterminer la composition centésimale massique d'un composé organique à partir de sa formule brute.		de bois, éthanol ou butane contenu dans un labogaz.
Densité d'un gaz par rapport à l'air	Faire rappeler la définition de la densité. Faire rappeler la relation $d = \frac{M}{29}$.	Questions/réponses	- Boîte d'allumettes - Exercices
Formule brute	Amener les apprenants à déterminer la formule brute d'un composé organique à partir de: - sa composition centésimale massique - la relation $d = \frac{M}{29}$		polycopiés

LEÇON 2: HYDROCARBURES SATURES: LES ALCANES (4 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Dans le cadre des activités du club scientifique de leur établissement, les élèves de la 1ère C₁ du Lycée Moderne de Port-Bouet se rendent à la SIR. Lors de cette visite, ils apprennent que l'essence sans plomb, le gas-oil et le kérosène sont des mélanges d'alcanes. Intéressés par cette information et désireux d'en savoir davantage, ils s'engagent, de retour en classe à connaître la structure des alcanes, à nommer quelques alcanes et montrer leur intérêt.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Structure des alcanes Formule générale des alcanes non cycliques et cycliques Isomérie de chaîne	 Faire rappeler la définition de la liaison covalente. Construire des molécules d'alcanes à l'aide des modèles moléculaires. Mettre en évidence la structure tétraédrique du carbone à partir de la molécule de méthane. Mettre en évidence la libre rotation autour de la liaison C-C Faire rappeler la formule générale des alcanes non cyclique. Donner la définition d'un alcane. Découvrir les isomères à partir des modèles moléculaires. Donner la formule générale des alcanes cycliques. 	Observation Expérimentation	
Nomenclature des alcanes	 Donner les règles de nomenclature des alcanes. Faire nommer quelques: alcanes à chaîne carbonée linéaire; alcanes à chaîne carbonée ramifiée; alcanes à chaîne carbonée cyclique; dérivés substitués. Faire écrire les formules semidéveloppées de quelques alcanes. 	Questions/réponses Travail individuel Travail de groupe	- Labo gaz - Eau de chaux - Verrerie - Alcane -Halogène - Modèles moléculaires
Propriétés chimiques des alcanes: - réactions de combustion des alcanes - réactions de substitution	 Réaliser les combustions complète et incomplète d'un alcane : le butane. Faire identifier les produits obtenus. Faire écrire les équations-bilans des réactions. Réaliser une réaction de substitution avec au moins un alcane. Faire mettre en évidence les produits obtenus. Faire écrire l'équation-bilan de la réaction. Illustrer la conservation de la chaîne carbonée à l'aide des modèles moléculaires. Donner des exemples de dérivés substitués utilisés dans la vie courante. 	Expérimentation Travail de groupe Travail individuel	
Intérêt des alcanes et de leurs dérivés substitués Danger des alcanes	Dégager l'intérêt des alcanes (combustibles, carburants) et de leurs dérivés substitués dans la vie courante. Montrer les dangers liés à l'utilisation des alcanes et leurs dérivés	- Discussion dirigée	

LEÇON 3: HYDROCARBURES INSATURES: ALCENES ET ALCYNES (4 H)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de 1^{ère} C au Lycée Moderne BAD N'douci accompagne son au garage pour souder le pot d'échappement de sa voiture. Pour réaliser la soudure, le tôlier utilise deux bouteilles de gaz munies de tuyaux sur lesquels mentionnées pour l'une acétylène et dioxygène pour l'autre. Il s'informe auprès du tôlier. Il lui dit alors que les soudures sont faites grâce à la combustion de l'acétylène dans le dioxygène. Le lendemain, l'élève partage sa

père sont

découverte avec ses camarades de classe. Désireux de comprendre ce processus, ils décident de connaître la structure des alcènes et des alcynes, d'en nommer quelques-uns et de montrer l'importance industrielle des composés insaturés.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Structure des alcènes Définition et formule générale Isomérie de position Isomérie Z – E	 Définir un alcène Donner la formule générale d'un alcène Décrire à partir de modèles moléculaires, la géométrie de la molécule d'éthylène. Comparer les longueurs des liaisons (simple et double). Faire mettre en évidence, à partir des modèles moléculaires : l'impossibilité de la libre rotation autour de la liaison double ; la distinction entre le carbone tétraédrique et les autres carbones ; l'isomérie de position ; l'isomérie Z – E ou Cis-Trans 	Observation Travail de groupe Expérimentation	- Modèles- modèles moléculaires - Pent-1-ène ou un alcène liquide - Eau de brome - Carbure de calcium - Verrerie
Nomenclature des alcènes	 Donner les règles de nomenclature des alcènes. Faire nommer quelques alcènes : alcènes à chaîne carbonée linéaire ; alcènes à chaîne carbonée ramifiée ; 	Questions/réponses Travail individuel Travail de groupe	Verreire

	Réaliser - les combustions complète et	
	incomplète d'un alcène.	E // day at attack
	Faire identifier les produits obtenus.	Expérimentation
D 44.4	• Faire écrire les équations-bilans des	Travail individuel
Propriétés	réactions.	Travali illulviduei
chimiques des	Réaliser la réaction du dibrome sur un	Travail de groupe
alcènes :	alcène.	Travair de groupe
- combustion	• Faire écrire l'équation-bilan de la réaction.	Discussion dirigée
- addition	• Faire écrire les équations –bilans des	Discussion an igee
- polymérisation	réactions d'addition du dihydrogène, du	
	chlorure d'hydrogène, du dichlore et de l'eau sur un alcène.	
	 Illustrer à l'aide de modèles moléculaires 	
	le changement de structure du carbone au	
	cours de la réaction d'addition.	
	 Définir la polymérisation. 	
	 Définir un polymère. 	
	 Donner des exemples de polymères 	
	(polychlorure de vinyle, polyéthylène,	
	polystyrène)	
	NB : Indiquer que les alcènes	
	décolorent l'eau de brome.	
Importance des	Montrer l'importance industrielle des	Discussion dirigée
alcènes	alcènes.	_
	 Définir un alcyne 	Observation
	Donner la formule générale d'un	m (1) 1: 1
Structure des	alcyne	Travail individuel
alcynes	Décrire à partir de modèles	Travail de groupe
Définition et formule	moléculaires, la géométrie de la	Travail de groupe
générale	molécule d'acétylène.	
generale	 Mettre en évidence, à partir des modèles moléculaires : 	
	-l'impossibilité de la libre rotation	
	autour de la liaison triple ;	
	-la distinction entre le carbone	
	tétraédrique et les autres carbones ;	
	Donner les règles de nomenclature des	
Nomenclature des	alcynes.	Travail individuel
alcynes	• Faire nommer quelques alcynes :	
	- alcynes à chaîne carbonée linéaire ;	Travail de groupe
	- alcynes à chaîne carbonée ramifiée ;	
	Réaliser les combustions complète et	
	incomplète de l'acétylène.	Expérimentation
	Friend danki Grands and darke alsterna	
Propriétés	• Faire identifier les produits obtenus.	
chimiques des	Faire écrire les équations-bilans des	Travail individuel
chimiques des alcynes :	• Faire écrire les équations-bilans des réactions.	Travail individuel
chimiques des alcynes : - combustion	 Faire écrire les équations-bilans des réactions. Réaliser la réaction du dibrome sur 	Travail individuel
chimiques des alcynes :	• Faire écrire les équations-bilans des réactions.	Travail individuel

LEÇON 4: LE BENZENE (2 h)

EXEMPLE DE SITUATION D'APPLICATION

Le père d'un élève en classe de 1ère Cau Lycée Municipal 1 Attécoubé travaille dans une imprimerie où il est malheureusement exposé à des émanations de vapeur de benzène. Tombé malade, le médecin traitant informe la famille que son état est dû à son exposition à ce composé. Inquiet, l'élève informe ses camarades de classe. Ensemble ils décident de s'informer sur la structure du benzène, ses propriétés chimiques et sa toxicité.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Structure de la molécule du benzène Formules brute et développée du benzène Caractéristiques du noyau benzénique Autres composés	 Faire représenter la molécule de benzène à l'aide des modèles moléculaires. Justifier la présence de six électrons délocalisés sur le cycle benzénique. Donner les formules brute et développée du benzène. Donner les caractéristiques du noyau benzénique Ecrire les formules semi-développées des	Travail individuel Travail de groupe	
aromatiques : - Phénol - Styrène - Naphtalène - Toluène	composés aromatiques ci-dessous : - phénol ; - styrène ; - toluène - naphtalène.	Travail individuel Travail de groupe	
Propriétés du noyau benzénique - Réactions de substitution - Réactions d'addition	 Expliquer que du fait de la présence du noyau benzénique dans les composés aromatiques des réactions d'addition (en bloc)et de substitution se font avec ces composés. Faire écrire les équations- bilans des réactions. Faire représenter des dérivés substitués du benzène à l'aide de modèles moléculaires. Expliquer l'addition en bloc. Signaler la toxicité du benzène. N.B.: Du fait de la toxicité du benzène, aucune réaction chimique ne sera réalisée. 	Questions/réponses	Modèles moléculaires
Isomérie ortho, méta et para.	Expliquer l'isomérie ortho, méta et para.		

LEÇON 5: PETROLE ET GAZ NATURELS (1 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Dans le cadre d'un exposé sur le pétrole et les gaz naturels, les élèves de la $1^{\text{ère}}$ C_1 du Lycée Moderne 2 d'Abobo entreprennent des recherches. Ils découvrent que le pétrole brut doit être fractionné et raffiné pour obtenir la multitude de produits qui déterminent notre quotidien. Ils décident alors d'expliquer le fractionnement, le craquage et le reformage du pétrole brut, puis de montrer l'importance de quelques produits dérivés du pétrole et connaître leur impact sur l'environnement.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Opérations de base de l'industrie du pétrole et des gaz naturels : - fractionnement du pétrole brut - craquage - reformage	Expliquer les termes suivants : - fractionnement du pétrole brut ; - craquage ; - reformage. NB: L'Enseignant donnera l'origine du pétrole et des gaz naturels	Exposé Discussion dirigée	
Constituants du pétrole Composants des gaz naturels.	 Faire rechercher quelques constituants du pétrole. Faire rechercher quelques composants des gaz naturels. 	Enquête découverte	Documents enquête
Quelques produits dérivés du pétrole	 Faire citer quelques produits dérivés du pétrole. Montrer l'importance des produits dérivés du pétrole. Montrer leurs impacts sur l'environnement. 	Questions/réponses	
Production nationale et mondiale.	Donner une estimation de la production nationale et mondiale.	Enquête découverte	

LEÇON 6: QUELQUES COMPOSES ORGANIQUES OXYGENES (4h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en classe de 1ère C au Lycée Municipal Simone Ehivet Gbagbo de Yopougon découvre dans une revue scientifique qu'il existe des composés organiques dits oxygénés qui jouent un rôle très important dans la vie courante. De retour en classe, il informe ses camarades. Voulant en savoir davantage, et ensemble ils décident de connaître les formules générales de quelques composés organiques oxygénés, d'en nommer quelques-uns, d'écrire leurs formules semi-développées puis de dégager leur intérêt.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Alcool Ether-oxyde Aldéhyde Cétone Acide carboxylique Ester	 Découvrir les différentes combinaisons possibles entre les atomes C, O, H. Distinguer et nommer les différentes familles à partir du groupe fonctionnel. Ecrire les formules générales des différents composés. Construire les modèles moléculaires de quelques composés. Donner les règles de nomenclature des différentes familles Faire nommer quelques composés de chaque famille. Ecrire les formules semi-développées de quelques composées de chaque famille. NB: On se limitera aux composés dont la molécule ne contient pas plus de quatre atomes de carbone et de deux atomes 	Travail de groupe Travail individuel Observation	Modèles moléculaires
Intérêt de quelques composées	 d'oxygène. Dégager l'intérêt de quelques composés organiques oxygénés. 	Discussion dirigée	

LEÇON 7: L'ETHANOL (2 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Dans le cadre des activités du club scientifique, les élèves de la 1ère C du lycée BAD de Soubré se rendent sur un chantier de fabrication de boisson traditionnelle appelée communément « KOUTOUKOU » dont la consommation abusive nuit à la santé de l'homme. Cette boisson contient une dose importante d'éthanol. Voulant en savoir davantage, les élèves, de retour en classe, décident d'expliquer les procédés d'obtention de l'éthanol et les dangers liés à la consommation abusive de boissons alcoolisées, d'identifier les produits de son oxydation puis d'exploiter les équation-bilans de ses réactions d'oxydation.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Obtention de l'éthanol - Hydratation de l'éthylène - Fermentation des jus sucrés	 Expliquer les procédés d'obtention de l'éthanol (hydratation de l'éthylène et fermentation des jus sucrés) Ecrire les équations- bilan des réactions chimiques. 	Discussion dirigée Travail individuel	
Dangers liés à la consommation abusive de boissons alcoolisées	Montrer que la consommation abusive de boissons alcoolisées peut entraîner des comportements à risque qui peuvent conduire à l'infection du VIH suite à des rapports sexuels non protégés).	Brainstorming	- Verrerie - Solution d'éthanol - Tortillon de
Propriétés chimiques de l'éthanol - Combustion de l'éthanol - Oxydation ménagée (expérience de la lampe sans flamme)	 Réaliser la combustion de l'éthanol. Identifier les produits formés. Faire écrire l'équation-bilan de la réaction. Réaliser l'expérience de la lampe « sans flamme » Amener les apprenants à identifier les produits formés (l'éthanal à l'aide du réactif de Schiff et l'acide éthanoïque à l'aide du papier pH). Faire écrire les équations- bilan des réactions. 	Expérimentation Travail individuel	cuivre - papier pH - réactif de Schiff - Boîte d'allumettes

LEÇON 8: ESTERIFICATION ET HYDROLYSE D'UN ESTER (4 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Lors d'une journée porte ouverte sur le thème «la chimie au quotidien» dans un lycée, un élève de la classe de 1ère C découvre dans un stand les essences de fruits. Le responsable de stand lui apprend que ces essences sont des molécules organiques appelées ester. Dans le souci de s'informer davantage avec ses camarades de classe sur ces molécules, ils se proposent de réaliser l'estérification entre un alcool et un acide carboxylique et l'hydrolyse d'un ester, de connaître la notion d'équilibre chimique et l'intérêt des esters.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Etude de l'estérification :	Définir la réaction d'estérification.Faire tracer des courbes		
- Définition de l'estérification - Courbes d'estérification - Caractéristiques d'une réaction d'estérification - Equation – bilan	 d'estérification à partir de résultats d'expériences. Amener les élèves à interpréter ces courbes. Amener les élèves à donner les caractéristiques de la réaction d'estérification. Amener les élèves à écrire l'équation – bilan d'une réaction d'estérification. 	Travail individuel Questions – réponses	Tableaux de mesures

Etude de l'hydrolyse d'un ester : - Définition de l'estérification - Courbes d'estérification - Caractéristiques d'une réaction d'estérification - Equation – bilan.	 Définir la réaction d'hydrolyse d'un ester. Faire tracer des courbes d'hydrolyse à partir de résultats d'expériences. Amener les élèves à interpréter ces courbes. Amener les élèves à donner les caractéristiques de l'hydrolyse d'un ester. Amener les élèves à écrire l'équation – bilan d'une réaction d'hydrolyse d'un ester. 	Travail individuel Questions – réponses	
Facteurs liés aux réactions d'estérification et d'hydrolyse d'un ester. Notion d'équilibre chimique.	Amener les élèves à identifier les facteurs dont dépendent les réactions d'estérification et d'hydrolyse d'un ester. Expliquer la notion d'équilibre chimique.	Questions – réponses	

COMPETENCE 5: TRAITER UNE SITUATION SE RAPPORTANT A L'OXYDOREDUCTION

THEME 5: OXYDOREDUCTION

LEÇON 1: REACTIONS D'OXYDOREDUCTION EN SOLUTION AQUEUSE (4 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un groupe d'élèves de la $1^{\text{ère}}$ C_2 du Lycée Moderne Agboville réalise une expérience : il immerge de la paille de fer dans une solution de sulfate de cuivre (II). Au bout de quelques minutes, les élèves observent sur la paille de fer un dépôt rouge brun et la décoloration de la solution de sulfate de cuivre (II). Désireux de savoir ce qui s'est réellement passé, les élèves cherchent à interpréter cette réaction, à écrire son équation-bilan et à définir les termes oxydation, réduction, oxydant et réducteur.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Réaction entre l'ion argent et le métal cuivre Réaction entre l'ion cuivre II et le métal fer Equations-bilan des réactions chimiques	 Amener les apprenants à réaliser : -la réaction entre l'ion argent et le métal cuivre ; -la réaction entre l'ion cuivre II et le métal fer. Faire interpréter les résultats des deux expériences. Faire écrire l'équation-bilan à partir des demi-équations dans chacun des cas. 	Expérimentation Observation Travail de groupe Questions/réponses	- Métal Cu - Métal Fe - Solution de sulfate de cuivre II - Solution de nitrate d'argent A défaut des produits ci- dessus cités, d'autres produits et matériels peuvent être

Définitions des termes : - réducteur et oxydant - oxydation et réduction - réaction d'oxydoréduction	Amener les apprenants à donner les définitions de : - réducteur et oxydant ; - oxydation et réduction ; - réaction d'oxydoréduction.	Questions/réponses	
Couple oxydant - réducteur	 Amener les élèves à définir le couple oxydant-réducteur à partir des demiéquations électroniques. Donner les exemples d'autres couples oxydant-réducteur. Généraliser la notion de couples oxydant-réducteur. Faire écrire des demi-équations électroniques pour d'autres couples oxydants-réducteurs tels que (Ag+/Ag, Fe²+/Fe, Al³+/Al, Pb²+/Pb et Zn²+/Zn). 	Questions/réponses	
Masse de métal			
déposée	Amener les élèves à utiliser l'équation- bilan de la réaction chimique pour	Travail individuel	
Masse de métal disparu.	déterminer à la fin de la réaction le dépôt et la disparition de masses.		

LEÇON 2 : CLASSIFICATION QUALITATIVE DES COUPLES OXYDANT/REDUCTEUR (5h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Lors d'une fête de l'excellence au Lycée Moderne Nimbo Bouaké, les élèves de 1èreC ont constaté que leurs camarades élèves ayant consommé de la citronnade conservée toute une nuit dans un seau en zinc ont été intoxiqués, alors que ceux ayant consommé le même jus conservé dans un seau en cuivre n'ont pas eu de problème. Quelques élèves pensent que les ions zinc II pourraient être à l'origine de cette intoxication. Curieux de savoir la réaction qui a conduit à la formation de cette substance toxique, les élèves cherchent à interpréter quelques réactions d'oxydo-réduction, à classer quelques couples oxydants/réducteurs et à déduire les réactions possibles.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Diani, and a War	 Faire réaliser les réactions inverses des réactions vues dans le chapitre précédent (réaction entre l'ion argent et le métal cuivre et réaction entre l'ion cuivre II et le métal zinc). Faire interpréter les résultats obtenus. 	Expérimentation Questions- réponses	 - Métal Cu - Métal Zn - Métal Fe - Acide chlorhydrique - Solution de
Réaction entre l'ion cuivre II et le métal zinc et la réaction inverse.	 Faire réaliser d'autres réactions chimiques et leurs réactions inverses : réaction entre l'ion cuivre II et le métal zinc ; 	Expérimentation	sulfate de cuivre II - Solution de sulfate de fer
Réaction entre l'ion fer II et le métal zinc et la réaction inverse.	 réaction entre l'ion fer II et le métal zinc . Faire interpréter les résultats obtenus. Faire écrire les équations-bilans des réactions ayant eu lieu. 	Travail de groupe	Solution de sulfate de zincSolution de nitrate d'argent

Classification de quelques couples oxydants/réducteurs : (Ag+/Ag, Cu ²⁺ /Cu, Fe ²⁺ /Fe. Zn ²⁺ /Zn).	 Amener les élèves à classer qualitativement les couples oxydants- réducteurs à partir des résultats des expériences ci-dessus. Faire déduire de la classification les réactions chimiques possibles. 	Exploitation Discussion dirigée
Action de l'ion H ₃ O+ sur quelques métaux	 Faire réaliser l'action de l'ion hydronium sur le métal fer, le métal zinc et le métal cuivre. Faire écrire les équations- bilans des réactions chimiques. 	Expérimentation Travail de groupe
Place du couple H ₃ O+/H ₂ dans la classification électrochimique qualitative	Amener les apprenants à trouver la place du couple H_3O^+/H_2 dans la classification électrochimique.	Travail individuel Travail de groupe

LEÇON 3: CLASSIFICATION QUANTITATIVE DES COUPLES OXYDANTS/REDUCTEURS (3 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un réparateur d'appareils électroménagers du quartier commerce de Niablé a fasciné un groupe d'élèves de la 1ère C du Lycée Nanan Kouakou Kouao de ladite ville avec l'expérience ci-contre.

Il insère une lame de cuivre et une lame de zinc dans une tomate. **A l'aide d'un voltmètre**, il mesure la différence de potentiel entre **les** deux lames. Il dit aux élèves qu'il vient de réaliser une pile. Fascinés par cette découverte et afin d'en savoir davantage, en classe, le groupe informe leurs **camarades et ensemble**, **ils entreprennent** de schématiser cette pile, d'expliquer son fonctionnement, de déterminer sa f.é.m. puis de schématiser d'autres piles.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Pile Daniell	 Faire réaliser la pile Daniell. Faire mesurer la f.é.m. de la pile. Faire écrire les demi-équations aux électrodes lorsque la pile fonctionne. Faire écrire l'équation-bilan de la réaction chimique. Amener les élèves à expliquer le fonctionnement de la pile Daniell. Schématiser la pile Daniell. 	Expérimentation Travail de groupe Exploitation	- Matériel pour réaliser les piles - Multimètre - A.O si possible (montage suiveur) - Echantillons de piles - Documents divers sur les piles électrochimiques (pile Volta, pile Leclanché, pile alcaline et accumulateur)
Autres piles	 Amener les apprenants à réaliser d'autres piles : pile Pb/ Pb²+// Cu²+/Cu pile Fe /Fe²+//Pb²+/Pb; pile Zn /Zn²+ // Fe²+/Fe Faire écrire les demi-équations aux électrodes de chacune des piles en fonctionnement. Faire déduire les équations-bilan des réactions chimiques. Faire schématiser ces piles. Généraliser la schématisation. 	Expérimentation Travail de groupe Exploitation	
- Potentiel d'oxydoréduction - Force électromotrice (f.é.m.)	 Définir le potentiel d'oxydoréduction pour une demi-pile à hydrogène et une demi-pile quelconque. Définir la force électromotrice (f.é.m.) d'une pile. Faire mesurer les f.é.m. des piles cidessus réalisées. 	Questions- réponses Brainstorming	
Classification quantitative des couples oxydants/réducteurs	 Faire classer quantitativement des couples oxydants-réducteurs Amener les élèves à prévoir les réactions possibles à partir des potentiels normaux. Faire exploiter les équation-bilans des réactions chimiques 	Travail individuel Travail de groupe Exploitation	

	Expliquer sommairement à partir des		
Quelques piles	couples oxydants-réducteurs et à l'aide de		
électrochimiques	documents, le fonctionnement des piles		
- Pile Volta	suivantes:	Discussion dirigée	
- Pile Leclanché	- pile Volta ;	Discussion unigee	
- Pile alcaline	- pile Leclanché ;		
- Accumulateur	- pile alcaline ;		
	- accumulateur.		

LEÇON 4: COUPLES OXYDANT/REDUCTEUR EN SOLUTION AQUEUSE - DOSAGE (4 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Les élèves de la $1^{\text{ère}}$ C du Lycée Moderne d'Akoupé ont découvert dans une revue scientifique que, l'alcooltest qui permet aux policiers de vérifier l'état d'ivresse d'un automobiliste, consiste en une réaction d'oxydoréduction entre l'éthanol et l'ion dichromate ($Cr_2O_7^{2-}$). Afin de vérifier cette information, ils décident de prévoir les réactions possibles à partir des potentiels normaux, de réaliser des dosages puis d'exploiter l'équation-bilan d'une réaction de dosage.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Etude de quelques couples - Cr ₂ O ₇ ²⁻ /Cr ³⁺ - MnO ₄ -/Mn ²⁺ ; - F _e ³⁺ /F _e ²⁺ ; - I ₂ /I; - CH ₃ COOH/CH ₃ CH ₂ OH S ₄ O ₆ ²⁻ /S ₂ O ₃ ²⁻	 Amener les élèves à réaliser quelques expériences à partir des couples cidessous : - Cr₂O₇²-/Cr³⁺ et - CH₃COOH/CH₃CH₂OH; - MnO₄-/Mn²⁺ et F_e³⁺/F_e²⁺. Amener les élèves à : écrire les demi-équations électroniques ; àdéduire les équation-bilan des réactions chimiques. Donner les potentiels normaux des différents couples. Amener les élèves à prévoir les réactions possibles à partir des potentiels normaux. 	Expérimentation Travail de groupe	- Solution d'ions Fer II - Solution de H ₂ SO ₄ - Solution de KMnO ₄ et/ou Solution de K ₂ Cr ₂ O ₇ Burette - bécher - Agitateur magnétique - Solution de KI - Solution de thiosulfate de sodium Na ₂ S ₂ O ₃
Dosage de l'ion F_e^{2+} par l'ion MnO_4 - et/ou dosage de I_2 par $S_2O_3^{2-}$	 Faire réaliser le dosage de l'ion F_e²⁺ par l'ion MnO₄-et/ou le dosage de I₂ par S₂O₃²⁻ Amener les élèves à écrire les équation-bilans des réactions d'oxydoréduction. Amener les élèves à établir la relation n₀C₀V₀ = n_rC_rV_r à l'équivalence Amener les élèves àdéduirela concentration de la solution de concentration inconnue. Amener les élèves à dégager l'intérêt d'un dosage(précision des mesures). 	Expérimentation Travail de groupe Travail individuel	

LEÇON 5: OXYDOREDUCTION PAR VOIE SECHE (3,5 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

A l'occasion de la fête du nouvel an, des élèves de la $1^{\text{ème}}$ C du Lycée Classique d'Abidjan observent un feu d'artifices. Ce feu d'artifices est le résultat de réactions chimiques faisant intervenir divers composés solides (magnésium, oxyde ferrique (Fe₂O₃)....).

Les élèves sont émerveillés par l'éclat, la beauté des couleurs et des figures. Afin de montrer que ces réactions chimiques sont des réactions d'oxydoréduction. Ils entreprennent d'écrire les équation-bilans de ces réactions, de les interpréter et de définir le nombre d'oxydation.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Oxydation du magnésium par le dioxygène	 Faire réaliser l'oxydation par voie sèche du magnésium par le dioxygène. Faire écrire l'équation-bilan de la réaction chimique. 	Expérimentation Travail de groupe	
Réduction de l'oxyde de cuivre II par le carbone	 Faire réaliser la réduction de l'oxyde de cuivre II par le carbone. Faire écrire l'équation-bilan de la réaction chimique. 	Expérimentation Travail de groupe	- Ruban de magnésium - Flacon de dioxygène - Flacons - Allumettes - Métal Al - Oxyde ferrique (Fe ₂ O ₃) - Oxyde de cuivre II (CuO) - Poudre de carbone - Creuset -Eau de chaux
Réduction de l'oxyde ferrique par l'aluminium.	 Faire réaliser la réduction de l'oxyde ferrique par l'aluminium. Faire écrire l'équation-bilan de la réaction chimique. 	Expérimentation Travail de groupe	
Nombre d'oxydation	 Définir le nombre d'oxydation. Calculer les nombres d'oxydation de quelques espèces chimiques. Amener les élèves à expliquer l'oxydoréduction par voie sèche à partir de la variation du nombre d'oxydation. 	Brainstorming Questions-réponses	
Généralisation de la notion de nombre d'oxydation	Amener les élèves à identifier une réaction d'oxydoréduction par le nombre d'oxydation.	Travail individuel	

LEÇON 6: ELECTROLYSE (4 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Lors d'une visite d'une usine de fabrication de couverts de table, des élèves de la $1^{\text{ère}}$ D₃du Lycée Municipal de Koumassi apprennent du guide que certains couverts (cuillères, fourchettes et couteaux) sont étamés par électrolyse d'une solution contenant des ions étain Sn^{2+} . Pour comprendre ce phénomène, ils se proposent d'interpréter l'électrolyse de quelques solutions, d'écrire les équation-bilans des réactions chimiques et de connaître d'autres applications de l'électrolyse.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Electrolyse de la solution aqueuse d'acide sulfurique.	 Amener les apprenants à réaliser les différentes expériences : électrolyse de la solution aqueuse 	Expérimentation Travail de groupe	Alimentation 6V-12 VElectrolyseurElectrodes en
Electrolyse de la solution aqueuse de	d'acide sulfurique ; - électrolyse de la solution aqueuse de	Questions- réponses	carbone

chlorure d'étain.	chlorure d'étain ;		- Multimètre
Electrolyse de la solution aqueuse de chlorure de sodium.	 électrolyse de la solution aqueuse de chlorure de sodium. Amener les apprenants à interpréter les résultats des expériences. Faire écrire les demi- équations aux électrodes Faire écrire les équation-bilans des réactions chimiques dans chaque 		 Tube en U Solution H₂SO₄ Solution d'étain acidifiée fraichement préparée Solution de NaCl Indigo ou encre Phénolphtaléine
	 cas. Faire comparer les réactions aux électrodes avec les réactions chimiques naturelles d'oxydoréduction. Faire exploiter les équation-bilans des réactions chimiques 		T henorpheareme
Applications de l'électrolyse	 Donner quelques applications de l'électrolyse. Faire dégager l'intérêt de l'électrolyse. 	Discussion dirigée	

LEÇON 7: CORROSION ET PROTECTION DES METAUX (2,5 h)

EXEMPLE DE SITUATION D'APPRENTISSAGE

Un élève en 1^{ère} C au Lycée Départemental Abengourou a retrouvé une machette oubliée dans le champ de son père. Il constate que celle-ci est recouverte de rouille. Son voisin de classe informé, déclare avec assurance qu'il s'agit d'un phénomène de corrosion. Il veut néanmoins comprendre le phénomène. Il rend donc compte aux autres élèves de sa classe et ensemble ils entreprennent de s'informer sur le phénomène de corrosion puis d'expliquer les méthodes de protection des métaux.

CONTENUS	CONSIGNES POUR CONDUIRE LES ACTIVITES	TECHNIQUES PEDAGOGIQUES	MOYENS ET SUPPORTS DIDACTIQUES
Corrosion des métaux Conditions favorisant la corrosion	 Définir la corrosion d'un métal. Amener les élèves à : expliquer le phénomène de corrosion des métaux. déterminer les facteurs favorisant la 	Exposé / Brainstorming Questions- Réponses	
Protection des métaux contre la corrosion : - protection électrochimique ; - protection par revêtement.	 corrosion. Amener les élèves à énumérer les méthodes de protection des métaux contre la corrosion (protection électrochimique; - protection par revêtement). Amener les élèves à expliquer chaque méthode. Amener les élèves à dégager l'importance de la protection des métaux. 	Exposé / Brainstorming Questions- Réponses	Documents Enquête

III EVALUATION

Tableau de spécification

PAR COMPETENCE

Compátanas	Nbre	Nbre Connaissance		Compré	hension	Appl	ication	Traitement de situation		
Compétence	d'habiletés	Nbre	%	Nbre	%	Nbre	%	Nbre	%	
1	35	21	60	00	00	14	40	00	00	
2	49	25	51	05	10	18	37	01	02	
3	37	17	46	05	13	04	11	11	30	
4	47	11	23	07	15	03	7	26	55	
TOTAL	168	74	44	17	10	39	23	38	23	

IV- EXEMPLE DE FICHE DE LEÇON

Classe : 1ère C

Thème : **ELECTRICITE ET ELECTRONIQUE** Titre de la Leçon : **LE CONDENSATEUR**

Durée: 6h

TABLEAU DES HABILETES ET CONTENUS

HABILETES	CONTENUS						
Définir	un condensateur.						
Connaître	le symbole d'un : - condensateur non polarisé ; - condensateur à capacité variable ; - condensateur électrolytique polarisé.						
Interpréter	la décharge d'un condensateur.						
Tracer	la courbe $q_A = f(U_{AB})$						
Déterminer	 la capacité d'un condensateur. la capacité d'une association de condensateurs. 						
Connaître	l'unité de capacité.						
Connaître	la relation entre la charge du condensateur et la tension à ses bornes.						
Définir	la tension de claquage.						
Exploiter	un oscillogramme relatif à la charge ou à la décharge d'un condensateur.						
Connaître	les lois d'association des condensateurs.						
Appliquer	les lois d'association des condensateurs.						
Connaître	les expressions de l'énergie stockée par un condensateur.						
Utiliser	les relations : - $E = \frac{1}{2}CU^2$; - $E = \frac{Q^2}{2C}$; - $E = \frac{1}{2}QU$.						

EXEMPLE DE SITUATION

Dans le cadre d'une enquête découverte, un groupe d'élèves de la 1ère C du Lycée Municipal de Sikensi effectue des recherches sur des condensateurs, éléments électroniques se trouvant dans des appareils électroménagers tels que TV, Radio.... Intéressés par la diversité des formes et le nombre important de ces éléments à l'intérieur des appareils, les élèves décident de s'informer sur les condensateurs, d'établir les lois d'association puis calculer l'énergie stockée par un condensateur.

MATERIEL	SUPPORTS DIDACTIQUES
- Divers condensateurs générateur - Galvanomètre à (zéro central) - Condensateur - Commutateur -Fils de connexion -Maquette CNMS « charge et décharge d'un condensateur »	 Guide et programmes 1ère C et BIBLIOGRAPHIE Livre de physique 1ère (Arex) Livre de physique 1ère S et E (Eurin-gié) Livre de physique 1ère S (G. Martin)
- Oscilloscope.	

PLAN DE LA LEÇON

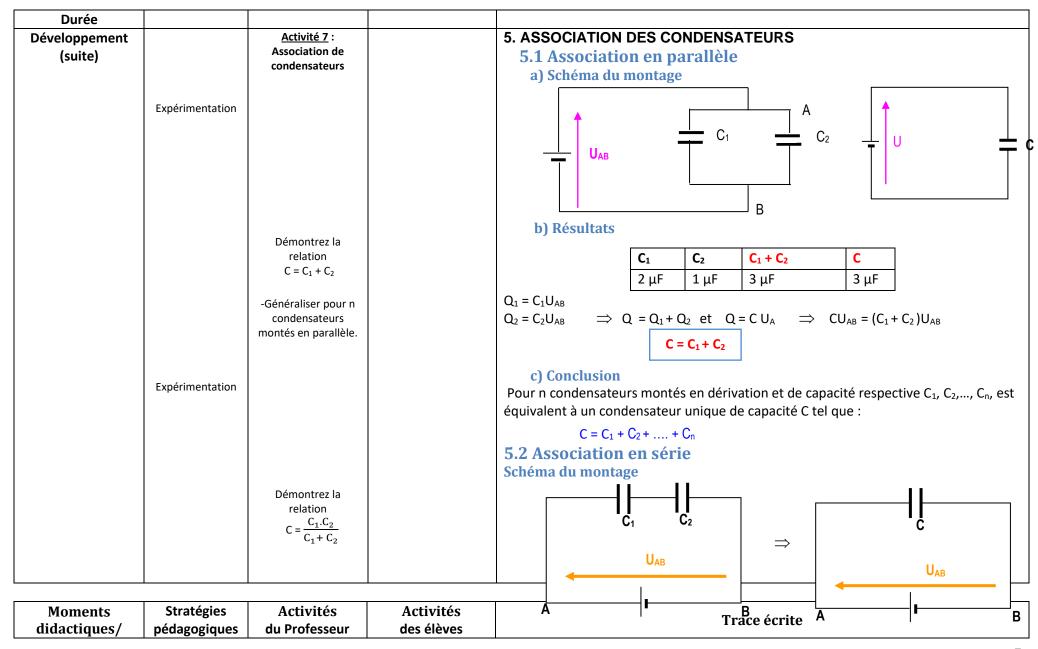
1. PRÉSENTATION DU CONDENSATEUR

- 1.1 Définition
- 1.2 Différents types de condensateurs
- 2. CHARGE ET DÉCHARGE DU CONDENSATEUR
 - 2.1 Dispositif expérimental
 - 2.2 Charge du condensateur
 - 2.3 Décharge du condensateur
 - 2.4 Conclusion générale
 - 2.5 Relation entre i et q
 - 2.6 Visualisation à l'oscilloscope
- 3. CAPACITÉ D'UN CONDENSATEUR
 - 3.1 Schéma du montage
 - 3.2 Résultats
 - 3.3 Exploitation des résultats
 - 3.4 Conclusion
 - 3.5 Capacité d'un condensateur plan
- 4. LIMITE D'UTILISATION D'UN CONDENSATEUR
 - 4.1 Tension nominale
 - 4.2 Tension de claquage
 - 4.3 Champ disruptif
- 5. ASSOCIATION DES CONDENSATEURS
 - 5.1 Association en parallèle
 - 5.2 Association en série
- 6. ÉNERGIE EMMAGASINEE PAR UN CONDENSATEUR
 - 6.1 Mise en évidence expérimentale
 - 6.2 Expression de l'énergie emmagasinée dans un condensateur

Moments didactiques/ Durée	Stratégies pédagogiques	Activités du Professeur	Activités des élèves	Trace écrite
Présentation (5 min)	Questions/ Réponses	Prérequis : -Le courant électrique - Les charges électriques -la tension électrique		
Développement	Questions/ Réponses	Faire lire la situation par un élève.	Un élève lit la situation.	LE CONDENSATEUR
		-Que veulent faire les élèves?	Ils veulent s'informer sur les condensateurs, établir les lois de leurs associations puis calculer l'énergie stockée par un	1. PRÉSENTATION DU CONDENSATEUR 1.1 Définition Le condensateur est un composant électronique formé de deux conducteurs
	Questions/	Activité 1: présentation des différents types de condensateurs	condensateur.	électriques en regard séparées par un isolant électrique appelé « diélectrique ». Les deux conducteurs constituent les armatures . Le symbole normalisé du contracteur est : Armature
	Réponses	Le professeur		Remarques : Diélectrique
		présente les différents condensateurs et les différents symboles.		 Le diélectrique peut être de l'air, du verre, du mica Les deux traits représentant les armatures sont parallèles et de même longueur. 1.2 Différents types de condensateurs
	Questions/ Réponses	,,		 a) Condensateurs non polarisés On distingue : Les condensateurs à papier paraffiné, matière plastique ou céramique. Leur
				symbole normalisé est : - Les condensateurs à capacité variable de symbole normalisé :
	Questions/ Réponses			
				b) Condensateurs électrolytiques ou électrochimiques Ils sont polarisés et souvent utilisés pour le filtrage des tensions redressées. Leur symbole normalisé est: + Ou + O

Moments didactiques/ Durée	Stratégies pédagogiques	Activités du Professeur	Activités des élèves	Trace écrite
Développement (suite)	Expérimentation	Activité 2 : Réalisation du montage de charge et de décharge.	Les élèves réalisent le montage	2. CHARGE ET DÉCHARGE DU CONDENSATEUR 2.1 Dispositif expérimental
	Questions/ Réponses	Quels sont les éléments électriques présents dans le montage ? -Mettez l'interrupteur en position 1.	-Un générateur -un galvanomètre -2 résistances - un voltmètre -un interrupteur à 2 positionsDes fils de connexion	6 V
	Expérimentation Questions/ Réponses	-Qu'observe- t-on ? -Cette déviation est- elle permanente ?	-Déviation de l'aiguille du galvanomètre. -Non elle s'arrête au bout d'un certain temps.	2.2 Charge du condensateur a) Observations - L'interrupteur K est en position 1: - L'aiguille du galvanomètre dévie et revient à zéro : Un courant électrique est passé
		-Dans quel état se trouve alors le condensateur ?	- il est chargé.	dans le circuit pendant un certain temps. Le voltmètre indique une tension croissante qui se stabilise au bout d'un certain temps. e
				b) Interprétation Le courant qui circule est appelé courant de charge et part de B vers A : i est positif Les électrons quittent l'armature A qui se charge positivement Les électrons arrivent sur l'armature B qui se charge négativement Au bout d'un certain temps, l'aiguille du galvanomètre ne dévie plus (i = 0) et la tension au bornes du condensateur reste constante : On dit que le condensateur est chargé.

Moments didactiques/ Durée	Stratégies pédagogiques	Activités du Professeur	Activités des élèves	Trace écrite
Développement (suite)	Questions/ Réponses Expérimentation Questions/ Réponses	-Mettez l'interrupteur en position 2. -Qu'observe-t-on ? -Quelle est la valeur prise par le courant de charge dès que la tension entre les armatures est égale à la tension aux bornes du générateur ?	-Déviation de l'aiguille du galvanomètre dans l'autre sens. - Le courant de charge s'annule.	On obtient: q _A = - q _B V _A - V _B = U _{PN} Le courant de charge s'annule dès que la tension entre les armatures est égale à la tension aux bornes du générateur. 2.3 Décharge du condensateur a) Observations • L'interrupteur est en position 2: - L'aiguille du galvanomètre dévie dans l'autre sens et revient à zéro : il y a donc présence d'un courant appelé courant de décharge. - Le voltmètre indique une tension décroissante qui s'annule : on dit que le condensateur est déchargé. b) Interprétation - Les électrons en excès sur l'armature B reviennent à l'armature A qui est en défaut. - Les charges q _A et q _B diminuent progressivement en valeur absolue jusqu'à s'annuler; les armatures redeviennent neutres : on obtient q _A = q _B = 0 et V _A - V _B = 0
	Questions/ Réponses	-Comparer les charges des deux armatures lors de la charge et de la décharge. Donner la définition de la charge q d'un condensateur.	-Elles sont de charges opposées Trace écrite	 2.4 Conclusion générale A chaque instant de la charge et de la décharge du condensateur, les deux armatures portent des charges opposées : q_A = − q_B La charge q d'un condensateur est la quantité maximale d'électricité portée par une armature : q = q_A = - q_B


Moments didactiques/ Durée	Stratégies pédagogiques	Activités du Professeur	Activités des élèves	Trace écrite
Développement (suite)	Questions/ Réponses	Donner la relation entre i et q pendant la charge et pendant la décharge. Activité 3: Visualisation de la charge et de la décharge à l'oscilloscope -Qu'observe-t-on sur la voie Y1 de l'oscilloscope ? -Et sur la voie Y2?	-La tension aux bornes du GBF : tension en créneaux -La tension aux bornes du condensateur : tension qui s'établit progressivement et s'annule	2.5 Relation entre i et q - Pendant la charge : $i = \frac{dq}{dt}$ avec $i > 0$ (q croît) - Pendant la décharge : $i = \frac{dq}{dt}$ avec $i < 0$ (q décroît) 2.6 Visualisation à l'oscilloscope a) Schéma du montage b) Courbes observées
	Questions/ Réponses	-Que peut-on alors déduire de la charge et de la la décharge du condensateur ?	progressivementElle se fait aussi progressivement.	c) conclusion La charge ou la décharge d'un condensateur n'est pas instantanée. Il existe un régime transitoire (RT) et un régime permanent (RP).
	Expérimentation	Activité 4 : Capacité d'un condensateur. Le professeur fait réaliser le circuit et indique le rôle de chaque élément	Exécution par des élèves à partir de la maquette CNMS	3. CAPACITÉ D'UN CONDENSATEUR 3.1 Schéma du montage

Moments didactiques/ Durée	Stratégies pédagogiques	Activités du Professeur	Activités des élèves	Trace écrite											
Développement (suite)	Expérimentation	-A chaque 10 s, relevez les	3.2 Résultats s'exécutent Tablazu de mesures												
		valeurs de la tension U_{C} .		t (s)	0	10	20	30	40	50	60	70	80	90	100
	Questions/ Réponses			Uc (V)	0	0,90	1,80	2,75	3,65	4,50	5,40	6,20	7,10	7,90	8,75
	·	-Tracez la courbe	-Les élèves	q _A = I. t (mC)	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
		$q_A = f(U_C)$ sur du papier	s'exécutent.						I = 0,05	mA					
		millimétré.		Tracé de la cour		$_{M} = f(U)$	Jc)								
	Questions/ Réponses	-Quelle est la forme de la courbe obtenue ? -Déterminer la pente de cette droiteLe professeur donne la notion de capacité du condensateur à partir de la pente déterminée.	-C'est une droite -Les élèves s'exécutent.	3.3 Exploitation $q = f(U_c)$ est une de représente le coeff $C = \frac{\Delta q_A}{\Delta U_C}$ C est appelée la ca	on (lroit ficie	des ré e passa nt direc 0,56 m	sultat nt par l' teur de F	origine la droi	. Son éc	quation		a forme		Jc où C	

Moments didactiques/ Durée	Stratégies pédagogiques	Activités du Professeur	Activités des élèves	Trace écrite
Développement				Remarque : On utilise généralement les sous multiples du farad :
(suite)				• le millifarad (1 mF = 10 ⁻³ F)
				• le microfarad (1 μ F = 1.10^{-6} F)
				• Le nanofarad (1nF = 10 ⁻⁹ F)
				Le picofarad (1pF = 10^{-12} F)
	3.4 Conclusion			
	La charge Q d'un condensateur est proportionnelle à tout instant à la tension U à ses			
				bornes, le coefficient de proportionnalité est la capacité C du condensateur.
				Q = C. U ou U = Error!
				Remarque : La relation est valable lors de la charge comme de la décharge.
		Exercice		Exercice d'application 1
Evaluation		d'application 1 Donner un temps de		Un condensateur est branché aux bornes d'un générateur de courant débitant un
(30 minutes)		recherche aux élèves		courant d'intensité constante égale à I = 0,17 μA.
		et contrôler leurs productions.		Le tableau ci-dessous donne la tension aux bornes du condensateur en fonction de la
		-Envoyer un élève au tableau pour chaque	Chaque élève cherche les exercices au brouillon.	durée t de charge.
	Travail individuel			
	Travair interviolation	exercice.		U(mV) 0 4,0 9,2 15,6 21,4 26,1 37,0 46,2 t(s) 0 5 12 20 28 34 48 60
				t(s) 0 5 12 20 28 34 48 60 1. Tracer le graphe U en fonction du temps t.
		-Valider la réponse avant la prise de note		2. En déduire la valeur de la capacité du condensateur.
	Travail collectif	par les autres élèves.		3.5 Capacité d'un condensateur plan
	<u>Ac</u> Défir			a) Définition
				Un condensateur est dit plan lorsque ses armatures sont planes et séparées par un
		condensate un plan	Chaque élève prend la solution dans son cahier.	diélectrique en général l'air.
		définition d'un		b) Capacité
		condensateur plan		La capacité d'un condensateur plan est donnée par la relation suivante :

Moments Stratégies	Activités Activités	Trace écrite
--------------------	---------------------	--------------

didactiques/ Durée	pédagogiques	du Professeur	des élèves	
Développement (suite) Evaluation (15 minutes)	Travail individuel Travail collectif	Exercice d'application 2 Donner un temps de recherche aux élèves et contrôler leurs productions. -Envoyer un élève au tableau pour chaque exercice. -Valider la réponse avant la prise de note par les autres élèves. Activité 6: Définition de la tension nominale, la tension de claquage et le champ disruptif.	Chaque élève cherche les exercices au brouillon. Chaque élève prend la solution dans son cahier.	• Si le diélectrique est le vide : $C = \frac{\varepsilon_o s}{d} \text{ avec} \begin{cases} \varepsilon_o : permittivité du vide ou \\ constante diélectrique \\ S : surface de l'armature (m^2) \\ d : épaisseur du diélectrique ou distance \\ séparant les armatures \end{cases}$ • Si le diélectrique est quelconque $C = \frac{\varepsilon . S}{d} = \frac{\varepsilon_o . \varepsilon_r S}{d} \text{avec} \begin{cases} \varepsilon = \varepsilon_o \varepsilon_r \\ \varepsilon : permittivité du milieu \\ \varepsilon_r : permittivité relative du vide \end{cases}$ Exercice d'application 2 On charge un condensateur de capacité C = 0, 8 µF à l'aide d'une source de courant qui débite, pendant le temps t = 2,5 s, un courant d'intensité constante I = 22 µA. 1) Calculer la charge acquise par le condensateur. 2) Calculer la tension aux bornes du condensateur. 4. LIMITE D'UTILISATION D'UN CONDENSATEUR 4.1 Tension nominale C'est la tension supportable par le condensateur. Elle permet un fonctionnement adéquat du condensateur. 4.2 Tension de claquage C'est la tension limite au-delà de laquelle, le condensateur est détruit. Le diélectrique perd ainsi son caractère d'isolant. 4.3 Champ disruptif Le champ disruptif est le champ électrostatique au-delà duquel le diélectrique perd son caractère isolant. Ce champ n'est pas supportable par le condensateur. $E_d = \frac{U_c}{d} \qquad \text{Avec Uc : tension de claquage et d'épaisseur du diélectrique.}$
Moments	Stratégies	Activités	Activités	Trace écrite
didactiques/	pédagogiques	du Professeur	des élèves	Trace ecrite

Durée			
Développement (suite)	-Généraliser pour n condensateurs montés en série.		$U_{AB} = U_{C1} + U_{C2} = \text{Error!} + \text{Error!}$ Dans un montage en série, les condensateurs portent la même charge (i est constante), donc $Q_1 = Q_2 = Q$ $C = \frac{C_1 \cdot C_2}{C_1 + C_2}$ Conclusion Pour n condensateurs montés en série, la capacité du condensateur équivalent est donnée par la relation suivante : $\frac{1}{c} = \sum_{1}^{n} \frac{1}{C_n}$
	Exercice d'application 2 Donner un temps de recherche aux élèves et contrôler leurs productions. -Envoyer un élève au tableau pour chaque exercice. -Valider la réponse avant la prise de note par les autres élèves.	Chaque élève cherche les exercices au brouillon. Chaque élève prend la solution dans son cahier.	On considère le montage de la figure ci-dessous. $C_1 = C_2 = 2 \mu F \text{et}$ $C_3 = C_4 = 1 \mu F$ 1) Calculer la capacité Ce équivalente entre X et Y. 2) On applique entre X et Y une tension U = 1000 V. Déterminer la charge finale de chacun des condensateurs.

Moments didactiques/ Durée	Stratégies pédagogiques	Activités du Professeur	Activités des élèves	Trace écrite
Développement (suite)		Activité 10 : Mise en évidence l'énergie stockée par un condensateur Qu'observe t- on lorsqu'on ferme l'interrupteur ?	Le moteur se met en marche	6. ÉNERGIE EMMAGASINEE PAR UN CONDENSATEUR 6.1- Mise en évidence expérimentale On charge le condensateur en le mettant l'interrupteur K en position 1. Lorsqu'on place K en position 2, le moteur se met en marche. Il reçoit donc de l'énergie provenant du condensateur chargé : Un condensateur chargé emmagasine de l'énergie. 6.2- Expression de l'énergie emmagasinée dans un condensateur Un condensateur stocke de l'énergie potentielle électrostatique. Le condensateur est utilisé comme un réservoir d'énergie. L'énergie stockée par un condensateur est égale à chaque instant : Doule(J) E = Error!Q.U_AB = Error!\frac{Q^2}{C} = \frac{Q^2}{C} = Q

Moments didactiques/ Durée	Stratégies pédagogiques	Activités du Professeur	Activités des élèves	Trace écrite
Evaluation		Situation		Situation d'évaluation

(45 minutes)	d'évaluation	Au cours d'une séance de TP ton groupe veut utiliser l'énergie d'un condensateur
	Donner un temps de recherche aux élèves	pour faire tourner un moteur sur l'axe duquel s'enroule une ficelle reliée à un objet
	et contrôler leurs	de masse m. Pour cela vous réalisez et vous utilisez le montage suivant :
	productions.	
		(1) (2)
		, \(\frac{1}{2} \)
	-Envoyer un élève au	
	tableau pour chaque exercice.	
	exercice.	$6\sqrt{\frac{1}{T}}$ M
		\downarrow
	-Valider la réponse	
	avant la prise de note par les autres élèves	
	par les autres eleves	
		En position 1, après quelques instants, le voltmètre indique une tension de 6V, la
		capacité du condensateur est de 1 F.
		L'interrupteur est placé en position (2). L'objet de masse m = 100 g s'élève, puis
		s'arrête après être monté de 1,40 m. la tension aux bornes du condensateur est alors
		5,1 V. Tu es le rapporteur du groupe.
		1. Donne l'expression de la charge du condensateur en fonction de sa capacité.
		2. Calcule la charge q du condensateur après quelques instants de charge en position
		(1).
		3. Détermine :
		a) l'énergie emmagasinée dans le condensateur pendant la charge.
		b) l'énergie dans le condensateur lorsque l'objet s'est arrêté.
		c)la variation de l'énergie du condensateur.
		4. a) Calcule le travail du poids de l'objet et
		b) calcule la variation de son énergie potentielle de pesanteur.
		c) Indique sous quelle forme l'énergie s'est-elle dissipée.